These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 23581851)
1. Superhydrophobic paper in the development of disposable labware and lab-on-paper devices. Sousa MP; Mano JF ACS Appl Mater Interfaces; 2013 May; 5(9):3731-7. PubMed ID: 23581851 [TBL] [Abstract][Full Text] [Related]
2. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control. Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493 [TBL] [Abstract][Full Text] [Related]
3. Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Balu B; Berry AD; Hess DW; Breedveld V Lab Chip; 2009 Nov; 9(21):3066-75. PubMed ID: 19823721 [TBL] [Abstract][Full Text] [Related]
4. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation. Kobayashi T; Shimizu K; Kaizuma Y; Konishi S Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation. Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984 [TBL] [Abstract][Full Text] [Related]
7. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Yan YY; Gao N; Barthlott W Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918 [TBL] [Abstract][Full Text] [Related]
8. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. van Midwoud PM; Janse A; Merema MT; Groothuis GM; Verpoorte E Anal Chem; 2012 May; 84(9):3938-44. PubMed ID: 22444457 [TBL] [Abstract][Full Text] [Related]
9. Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches. Lima AC; Mano JF Nanomedicine (Lond); 2015 Jan; 10(1):103-19. PubMed ID: 25597772 [TBL] [Abstract][Full Text] [Related]
10. Lab-on-a-Foil: microfluidics on thin and flexible films. Focke M; Kosse D; Müller C; Reinecke H; Zengerle R; von Stetten F Lab Chip; 2010 Jun; 10(11):1365-86. PubMed ID: 20369211 [TBL] [Abstract][Full Text] [Related]
11. Characterisation of surface wettability based on nanoparticles. Gao N; Yan Y Nanoscale; 2012 Apr; 4(7):2202-18. PubMed ID: 22392411 [TBL] [Abstract][Full Text] [Related]
12. Applications of bio-inspired special wettable surfaces. Yao X; Song Y; Jiang L Adv Mater; 2011 Feb; 23(6):719-34. PubMed ID: 21287632 [TBL] [Abstract][Full Text] [Related]
13. Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices. Xu Y; Takai M; Ishihara K Ann Biomed Eng; 2010 Jun; 38(6):1938-53. PubMed ID: 20358288 [TBL] [Abstract][Full Text] [Related]
14. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
15. A disposable lab-on-a-chip platform with embedded fluid actuators for active nanoliter liquid handling. Samel B; Nock V; Russom A; Griss P; Stemme G Biomed Microdevices; 2007 Feb; 9(1):61-7. PubMed ID: 17106636 [TBL] [Abstract][Full Text] [Related]
16. Bioinspired wetting surface via laser microfabrication. Chen F; Zhang D; Yang Q; Yong J; Du G; Si J; Yun F; Hou X ACS Appl Mater Interfaces; 2013 Aug; 5(15):6777-92. PubMed ID: 23865499 [TBL] [Abstract][Full Text] [Related]
17. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A; Ionov L; Grundke K; Stamm M Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection. Oliveira KA; de Souza FR; de Oliveira CR; da Silveira LA; Coltro WK Methods Mol Biol; 2015; 1256():85-98. PubMed ID: 25626533 [TBL] [Abstract][Full Text] [Related]
19. Paper-based microfluidic devices by plasma treatment. Li X; Tian J; Nguyen T; Shen W Anal Chem; 2008 Dec; 80(23):9131-4. PubMed ID: 19551982 [TBL] [Abstract][Full Text] [Related]
20. Lab-on-chip methodologies for the study of transport in porous media: energy applications. Berejnov V; Djilali N; Sinton D Lab Chip; 2008 May; 8(5):689-93. PubMed ID: 18432337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]