These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 23581852)
1. Frozen translational and rotational motion of human immunodeficiency virus transacting activator of transcription peptide-modified nanocargo on neutral lipid bilayer. Wei L; Zhao X; Chen B; Li H; Xiao L; Yeung ES Anal Chem; 2013 May; 85(10):5169-75. PubMed ID: 23581852 [TBL] [Abstract][Full Text] [Related]
2. Single Particle Tracking of Peptides-Modified Nanocargo on Lipid Membrane Revealing Bulk-Mediated Diffusion. Wei L; Ye Z; Xu Y; Chen B; Yeung ES; Xiao L Anal Chem; 2016 Dec; 88(24):11973-11977. PubMed ID: 28193017 [TBL] [Abstract][Full Text] [Related]
3. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids. Hu Y; Patel S Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187 [TBL] [Abstract][Full Text] [Related]
5. Correlation between the translational and rotational diffusion of rod-shaped nanocargo on a lipid membrane revealed by single-particle tracking. He L; Li Y; Wei L; Ye Z; Liu H; Xiao L Nanoscale; 2019 May; 11(20):10080-10087. PubMed ID: 31089641 [TBL] [Abstract][Full Text] [Related]
6. Interactions of cell penetrating peptide Tat with model membranes: a biophysical study. Dennison SR; Baker RD; Nicholl ID; Phoenix DA Biochem Biophys Res Commun; 2007 Nov; 363(1):178-82. PubMed ID: 17854767 [TBL] [Abstract][Full Text] [Related]
7. Tempo-spatially resolved cellular dynamics of human immunodeficiency virus transacting activator of transcription (Tat) peptide-modified nanocargos in living cells. Wei L; Yang Q; Xiao L Nanoscale; 2014 Sep; 6(17):10207-15. PubMed ID: 25051531 [TBL] [Abstract][Full Text] [Related]
8. Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. Subrizi A; Tuominen E; Bunker A; Róg T; Antopolsky M; Urtti A J Control Release; 2012 Mar; 158(2):277-85. PubMed ID: 22100438 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanism of HIV-1 TAT peptide and its conjugated gold nanoparticles translocating across lipid membranes. Quan X; Sun D; Zhou J Phys Chem Chem Phys; 2019 May; 21(20):10300-10310. PubMed ID: 31070638 [TBL] [Abstract][Full Text] [Related]
10. Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR. Su Y; Waring AJ; Ruchala P; Hong M Biochemistry; 2010 Jul; 49(29):6009-20. PubMed ID: 20550193 [TBL] [Abstract][Full Text] [Related]
11. Cellular translocation of a γ-AApeptide mimetic of Tat peptide. Niu Y; Bai G; Wu H; Wang RE; Qiao Q; Padhee S; Buzzeo R; Cao C; Cai J Mol Pharm; 2012 May; 9(5):1529-34. PubMed ID: 22413929 [TBL] [Abstract][Full Text] [Related]
12. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Song HP; Yang JY; Lo SL; Wang Y; Fan WM; Tang XS; Xue JM; Wang S Biomaterials; 2010 Feb; 31(4):769-78. PubMed ID: 19819012 [TBL] [Abstract][Full Text] [Related]
13. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation. Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of HIV-1 transcription and virus replication using soluble Tat peptide analogs. Kashanchi F; Sadaie MR; Brady JN Virology; 1997 Jan; 227(2):431-8. PubMed ID: 9018142 [TBL] [Abstract][Full Text] [Related]
15. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Lo SL; Wang S Biomaterials; 2008 May; 29(15):2408-14. PubMed ID: 18295328 [TBL] [Abstract][Full Text] [Related]
16. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
17. The interactions and recognition of cyclic peptide mimetics of Tat with HIV-1 TAR RNA: a molecular dynamics simulation study. Li CH; Zuo ZC; Su JG; Xu XJ; Wang CX J Biomol Struct Dyn; 2013 Mar; 31(3):276-87. PubMed ID: 22943434 [TBL] [Abstract][Full Text] [Related]
18. Surface presentation of functional peptides in solution determines cell internalization efficiency of TAT conjugated nanoparticles. Todorova N; Chiappini C; Mager M; Simona B; Patel II; Stevens MM; Yarovsky I Nano Lett; 2014 Sep; 14(9):5229-37. PubMed ID: 25157643 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of intracellular delivery of anti-cancer drugs by the Tat peptide. Zhao JF; Chen JY; Mi L; Wang PN; Peng Q Ultrastruct Pathol; 2011 May; 35(3):119-23. PubMed ID: 21405950 [TBL] [Abstract][Full Text] [Related]
20. Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells. Gregas MK; Scaffidi JP; Lauly B; Vo-Dinh T Appl Spectrosc; 2010 Aug; 64(8):858-66. PubMed ID: 20719048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]