BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23581908)

  • 1. Isw1a does not have strict limitations on the length of extranucleosomal DNAs for mobilization of nucleosomes assembled with HeLa cell histones.
    Krajewski WA
    J Biomol Struct Dyn; 2014 Apr; 32(4):523-31. PubMed ID: 23581908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast Isw1a and Isw1b exhibit similar nucleosome mobilization capacities for mononucleosomes, but differently mobilize dinucleosome templates.
    Krajewski WA
    Arch Biochem Biophys; 2014 Mar; 546():72-80. PubMed ID: 24530316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Isw1a, Isw1b, and Isw2 nucleosome disrupting activities.
    Krajewski WA
    Biochemistry; 2013 Oct; 52(40):6940-9. PubMed ID: 24050724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA.
    Gangaraju VK; Bartholomew B
    Mol Cell Biol; 2007 Apr; 27(8):3217-25. PubMed ID: 17283061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dinucleosome specificity and allosteric switch of the ISW1a ATP-dependent chromatin remodeler in transcription regulation.
    Bhardwaj SK; Hailu SG; Olufemi L; Brahma S; Kundu S; Hota SK; Persinger J; Bartholomew B
    Nat Commun; 2020 Nov; 11(1):5913. PubMed ID: 33219211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2.
    Zofall M; Persinger J; Bartholomew B
    Mol Cell Biol; 2004 Nov; 24(22):10047-57. PubMed ID: 15509805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor.
    Udugama M; Sabri A; Bartholomew B
    Mol Cell Biol; 2011 Feb; 31(4):662-73. PubMed ID: 21135121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome recognition and spacing by chromatin remodelling factor ISW1a.
    Richmond TJ
    Biochem Soc Trans; 2012 Apr; 40(2):347-50. PubMed ID: 22435810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution.
    Eriksson PR; Clark DJ
    Sci Rep; 2021 Feb; 11(1):4195. PubMed ID: 33602956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA.
    Dang W; Kagalwala MN; Bartholomew B
    Mol Cell Biol; 2006 Oct; 26(20):7388-96. PubMed ID: 17015471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes.
    Stockdale C; Flaus A; Ferreira H; Owen-Hughes T
    J Biol Chem; 2006 Jun; 281(24):16279-88. PubMed ID: 16606615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mouse mammary tumour virus promoter positioned on a tetramer of histones H3 and H4 binds nuclear factor 1 and OTF1.
    Spangenberg C; Eisfeld K; Stünkel W; Luger K; Flaus A; Richmond TJ; Truss M; Beato M
    J Mol Biol; 1998 May; 278(4):725-39. PubMed ID: 9614938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism.
    Parnell TJ; Schlichter A; Wilson BG; Cairns BR
    Elife; 2015 Mar; 4():e06073. PubMed ID: 25821983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome.
    Zofall M; Persinger J; Kassabov SR; Bartholomew B
    Nat Struct Mol Biol; 2006 Apr; 13(4):339-46. PubMed ID: 16518397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General regulatory factors exert differential effects on nucleosome sliding activity of the ISW1a complex.
    Oyarzún-Cisterna A; Gidi C; Raiqueo F; Amigo R; Rivas C; Torrejón M; Gutiérrez JL
    Biol Res; 2024 May; 57(1):22. PubMed ID: 38704609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone Octamer Structure Is Altered Early in ISW2 ATP-Dependent Nucleosome Remodeling.
    Hada A; Hota SK; Luo J; Lin YC; Kale S; Shaytan AK; Bhardwaj SK; Persinger J; Ranish J; Panchenko AR; Bartholomew B
    Cell Rep; 2019 Jul; 28(1):282-294.e6. PubMed ID: 31269447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basis of specificity for a conserved and promiscuous chromatin remodeling protein.
    Donovan DA; Crandall JG; Truong VN; Vaaler AL; Bailey TB; Dinwiddie D; Banks OG; McKnight LE; McKnight JN
    Elife; 2021 Feb; 10():. PubMed ID: 33576335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobilization of hyperacetylated mononucleosomes by purified yeast ISW2 in vitro.
    Krajewski WA
    Arch Biochem Biophys; 2016 Feb; 591():1-6. PubMed ID: 26692330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo.
    Ocampo J; Chereji RV; Eriksson PR; Clark DJ
    Nucleic Acids Res; 2016 Jun; 44(10):4625-35. PubMed ID: 26861626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo.
    Fazzio TG; Gelbart ME; Tsukiyama T
    Mol Cell Biol; 2005 Nov; 25(21):9165-74. PubMed ID: 16227570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.