These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 23582083)

  • 1. Large area nanostructured arrays: optical properties of metallic nanotubes.
    Fröhlich K; Hojati-Talemi P; Bishop M; Zuber K; Murphy P; Evans D
    ACS Appl Mater Interfaces; 2013 May; 5(9):3937-42. PubMed ID: 23582083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO@Co hybrid nanotube arrays growth from electrochemical deposition: structural, optical, photocatalytic and magnetic properties.
    Fan LY; Yu SH
    Phys Chem Chem Phys; 2009 May; 11(19):3710-7. PubMed ID: 19421482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics.
    Farsinezhad S; Mohammadpour A; Dalrymple AN; Geisinger J; Kar P; Brett MJ; Shankar K
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2885-91. PubMed ID: 23763175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient inverted solar cells using TiO(2) nanotube arrays.
    Yu BY; Tsai A; Tsai SP; Wong KT; Yang Y; Chu CW; Shyue JJ
    Nanotechnology; 2008 Jun; 19(25):255202. PubMed ID: 21828647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells.
    Lin J; Liu X; Guo M; Lu W; Zhang G; Zhou L; Chen X; Huang H
    Nanoscale; 2012 Aug; 4(16):5148-53. PubMed ID: 22797488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The controlled fabrication and geometry tunable optics of gold nanotube arrays.
    Murphy A; McPhillips J; Hendren W; McClatchey C; Atkinson R; Wurtz G; Zayats AV; Pollard RJ
    Nanotechnology; 2011 Jan; 22(4):045705. PubMed ID: 21169660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance.
    Li Q; Shang JK
    Environ Sci Technol; 2009 Dec; 43(23):8923-9. PubMed ID: 19943667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic polyimide nanotube arrays with slippery or sticky superhydrophobicity.
    Zhu S; Li Y; Zhang J; Lü C; Dai X; Jia F; Gao H; Yang B
    J Colloid Interface Sci; 2010 Apr; 344(2):541-6. PubMed ID: 20092825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO nanowire array-templated LbL self-assembled polyelectrolyte nanotube arrays and application for charged drug delivery.
    Yuan W; Lu Z; Liu J; Wang H; Li CM
    Nanotechnology; 2013 Feb; 24(4):045605. PubMed ID: 23299408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capability of novel ZnFe₂O₄ nanotube arrays for visible-light induced degradation of 4-chlorophenol.
    Li X; Hou Y; Zhao Q; Teng W; Hu X; Chen G
    Chemosphere; 2011 Jan; 82(4):581-6. PubMed ID: 21040945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications.
    Jun Y; Park JH; Kang MG
    Chem Commun (Camb); 2012 Jul; 48(52):6456-71. PubMed ID: 22634750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation.
    Dickey MD; Weiss EA; Smythe EJ; Chiechi RC; Capasso F; Whitesides GM
    ACS Nano; 2008 Apr; 2(4):800-8. PubMed ID: 19206613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices.
    Ryu H; Kälblein D; Weitz RT; Ante F; Zschieschang U; Kern K; Schmidt OG; Klauk H
    Nanotechnology; 2010 Nov; 21(47):475207. PubMed ID: 21030776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt nanocluster-filled carbon nanotube arrays: engineered photonic bandgap and optical reflectivity.
    Soldano C; Rossella F; Bellani V; Giudicatti S; Kar S
    ACS Nano; 2010 Nov; 4(11):6573-8. PubMed ID: 20936794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter.
    Yun S; Kim SJ; Youn J; Kim H; Ryu J; Bae C; No K; Hong S
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32110885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extreme superomniphobicity of multiwalled 8 nm TiO2 nanotubes.
    Kim H; Noh K; Choi C; Khamwannah J; Villwock D; Jin S
    Langmuir; 2011 Aug; 27(16):10191-6. PubMed ID: 21770443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis.
    Sreekantan S; Saharudin KA; Lockman Z; Tzu TW
    Nanotechnology; 2010 Sep; 21(36):365603. PubMed ID: 20705970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol-gel electrophoresis.
    Ren X; Gershon T; Iza DC; Muñoz-Rojas D; Musselman K; Macmanus-Driscoll JL
    Nanotechnology; 2009 Sep; 20(36):365604. PubMed ID: 19687541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.