These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 23582158)
1. Corticospinal tract sprouting in the injured rat spinal cord stimulated by Schwann cell preconditioning of the motor cortex. Wills TE; Batchelor PE; Kerr NF; Sidon K; Katz M; Loy C; Howells DW Neurol Res; 2013 Sep; 35(7):763-72. PubMed ID: 23582158 [TBL] [Abstract][Full Text] [Related]
2. Influence of IN-1 antibody and acidic FGF-fibrin glue on the response of injured corticospinal tract axons to human Schwann cell grafts. Guest JD; Hesse D; Schnell L; Schwab ME; Bunge MB; Bunge RP J Neurosci Res; 1997 Dec; 50(5):888-905. PubMed ID: 9418975 [TBL] [Abstract][Full Text] [Related]
3. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord. Mahmood A; Wu H; Qu C; Xiong Y; Chopp M J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801 [TBL] [Abstract][Full Text] [Related]
4. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750 [TBL] [Abstract][Full Text] [Related]
5. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion. Jiang YQ; Armada K; Martin JH Exp Neurol; 2019 Nov; 321():113015. PubMed ID: 31326353 [TBL] [Abstract][Full Text] [Related]
6. Cocultures of rat sensorimotor cortex and spinal cord slices to investigate corticospinal tract sprouting. Stavridis SI; Dehghani F; Korf HW; Hailer NP Spine (Phila Pa 1976); 2009 Nov; 34(23):2494-9. PubMed ID: 19927097 [TBL] [Abstract][Full Text] [Related]
7. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury. Weishaupt N; Hurd C; Wei DZ; Fouad K Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634 [TBL] [Abstract][Full Text] [Related]
8. Transplantation of preconditioned Schwann cells following hemisection spinal cord injury. Dinh P; Bhatia N; Rasouli A; Suryadevara S; Cahill K; Gupta R Spine (Phila Pa 1976); 2007 Apr; 32(9):943-9. PubMed ID: 17450067 [TBL] [Abstract][Full Text] [Related]
9. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury. Song W; Amer A; Ryan D; Martin JH Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732 [TBL] [Abstract][Full Text] [Related]
10. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. Zhou L; Shine HD J Neurosci Res; 2003 Oct; 74(2):221-6. PubMed ID: 14515351 [TBL] [Abstract][Full Text] [Related]
11. Dissociated predegenerated peripheral nerve transplants for spinal cord injury repair: a comprehensive assessment of their effects on regeneration and functional recovery compared to Schwann cell transplants. Hill CE; Brodak DM; Bartlett Bunge M J Neurotrauma; 2012 Aug; 29(12):2226-43. PubMed ID: 22655857 [TBL] [Abstract][Full Text] [Related]
12. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study. Lacroix S; Havton LA; McKay H; Yang H; Brant A; Roberts J; Tuszynski MH J Comp Neurol; 2004 May; 473(2):147-61. PubMed ID: 15101086 [TBL] [Abstract][Full Text] [Related]
13. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits. Jiang YQ; Zaaimi B; Martin JH J Neurosci; 2016 Jan; 36(1):193-203. PubMed ID: 26740661 [TBL] [Abstract][Full Text] [Related]
14. Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. II. Implant characteristics and examination of corticospinal tract growth. Kuhlengel KR; Bunge MB; Bunge RP; Burton H J Comp Neurol; 1990 Mar; 293(1):74-91. PubMed ID: 1690226 [TBL] [Abstract][Full Text] [Related]
15. Grafted Activated Schwann Cells Support Survival of Injured Rat Spinal Cord White Matter. Marcol W; Ślusarczyk W; Larysz-Brysz M; Francuz T; Jędrzejowska-Szypułka H; Łabuzek K; Lewin-Kowalik J World Neurosurg; 2015 Aug; 84(2):511-9. PubMed ID: 25910924 [TBL] [Abstract][Full Text] [Related]
16. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Danilov CA; Steward O Exp Neurol; 2015 Apr; 266():147-60. PubMed ID: 25704959 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of corticospinal tract regeneration in the chronically injured spinal cord. Ferguson IA; Koide T; Rush RA Eur J Neurosci; 2001 Mar; 13(5):1059-64. PubMed ID: 11264681 [TBL] [Abstract][Full Text] [Related]
18. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury. Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724 [TBL] [Abstract][Full Text] [Related]
19. Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury. Weishaupt N; Li S; Di Pardo A; Sipione S; Fouad K Behav Brain Res; 2013 Feb; 239():31-42. PubMed ID: 23131414 [TBL] [Abstract][Full Text] [Related]
20. Pten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury. Du K; Zheng S; Zhang Q; Li S; Gao X; Wang J; Jiang L; Liu K J Neurosci; 2015 Jul; 35(26):9754-63. PubMed ID: 26134657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]