These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23582272)

  • 61. Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as potential PDE4 inhibitors.
    Song G; Zhao D; Hu D; Li Y; Jin H; Cui Z
    Bioorg Med Chem Lett; 2015 Oct; 25(20):4610-4. PubMed ID: 26320621
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Implications of PDE4 structure on inhibitor selectivity across PDE families.
    Ke H
    Int J Impot Res; 2004 Jun; 16 Suppl 1():S24-7. PubMed ID: 15224132
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Discovery of a substituted 8-arylquinoline series of PDE4 inhibitors: structure-activity relationship, optimization, and identification of a highly potent, well tolerated, PDE4 inhibitor.
    Macdonald D; Mastracchio A; Perrier H; Dubé D; Gallant M; Lacombe P; Deschênes D; Roy B; Scheigetz J; Bateman K; Li C; Trimble LA; Day S; Chauret N; Nicoll-Griffith DA; Silva JM; Huang Z; Laliberté F; Liu S; Ethier D; Pon D; Muise E; Boulet L; Chan CC; Styhler A; Charleson S; Mancini J; Masson P; Claveau D; Nicholson D; Turner M; Young RN; Girard Y
    Bioorg Med Chem Lett; 2005 Dec; 15(23):5241-6. PubMed ID: 16168647
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 antagonists and PDE4/7 inhibitors: A new approach for the treatment of pain.
    Chłoń-Rzepa G; Ślusarczyk M; Jankowska A; Gawalska A; Bucki A; Kołaczkowski M; Świerczek A; Pociecha K; Wyska E; Zygmunt M; Kazek G; Sałat K; Pawłowski M
    Eur J Med Chem; 2018 Oct; 158():517-533. PubMed ID: 30245393
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis and biological activity of pyrido[3',2':4,5]furo[3,2-d]pyrimidine derivatives as novel and potent phosphodiesterase type 4 inhibitors.
    Taltavull J; Serrat J; Gràcia J; Gavaldà A; Córdoba M; Calama E; Montero JL; Andrés M; Miralpeix M; Vilella D; Hernández B; Beleta J; Ryder H; Pagès L
    Eur J Med Chem; 2011 Oct; 46(10):4946-56. PubMed ID: 21871695
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of PDE4B Over 4D subtype-selective inhibitors revealing an unprecedented binding mode.
    Kranz M; Wall M; Evans B; Miah A; Ballantine S; Delves C; Dombroski B; Gross J; Schneck J; Villa JP; Neu M; Somers DO
    Bioorg Med Chem; 2009 Jul; 17(14):5336-41. PubMed ID: 19525117
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Determination of the structure of human phosphodiesterase-2 in a bound state and its binding with inhibitors by molecular modeling, docking, and dynamics simulation.
    Hamza A; Zhan CG
    J Phys Chem B; 2009 Mar; 113(9):2896-908. PubMed ID: 19708117
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular Bases of PDE4D Inhibition by Memory-Enhancing GEBR Library Compounds.
    Prosdocimi T; Mollica L; Donini S; Semrau MS; Lucarelli AP; Aiolfi E; Cavalli A; Storici P; Alfei S; Brullo C; Bruno O; Parisini E
    Biochemistry; 2018 May; 57(19):2876-2888. PubMed ID: 29652483
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inhibition of phosphodiesterase 2 by Bay 60-7550 decreases ethanol intake and preference in mice.
    Shi J; Liu H; Pan J; Chen J; Zhang N; Liu K; Fei N; O'Donnell JM; Zhang HT; Xu Y
    Psychopharmacology (Berl); 2018 Aug; 235(8):2377-2385. PubMed ID: 29876622
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Discovery of a highly potent series of oxazole-based phosphodiesterase 4 inhibitors.
    Kuang R; Shue HJ; Blythin DJ; Shih NY; Gu D; Chen X; Schwerdt J; Lin L; Ting PC; Zhu X; Aslanian R; Piwinski JJ; Xiao L; Prelusky D; Wu P; Zhang J; Zhang X; Celly CS; Minnicozzi M; Billah M; Wang P
    Bioorg Med Chem Lett; 2007 Sep; 17(18):5150-4. PubMed ID: 17683932
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors.
    Rutten K; Prickaerts J; Hendrix M; van der Staay FJ; Sik A; Blokland A
    Eur J Pharmacol; 2007 Mar; 558(1-3):107-12. PubMed ID: 17207788
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes.
    Verde I; Vandecasteele G; Lezoualc'h F; Fischmeister R
    Br J Pharmacol; 1999 May; 127(1):65-74. PubMed ID: 10369457
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of a PDE4-Specific Pocket for the Design of Selective Inhibitors.
    Feng X; Wang H; Ye M; Xu XT; Xu Y; Yang W; Zhang HT; Song G; Ke H
    Biochemistry; 2018 Jul; 57(30):4518-4525. PubMed ID: 29975048
    [TBL] [Abstract][Full Text] [Related]  

  • 75. PDE2 is a novel target for attenuating tumor formation in a mouse model of UVB-induced skin carcinogenesis.
    Bernard JJ; Lou YR; Peng QY; Li T; Lu YP
    PLoS One; 2014; 9(10):e109862. PubMed ID: 25330380
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Homology modeling, docking studies and molecular dynamic simulations using graphical processing unit architecture to probe the type-11 phosphodiesterase catalytic site: a computational approach for the rational design of selective inhibitors.
    Cichero E; D'Ursi P; Moscatelli M; Bruno O; Orro A; Rotolo C; Milanesi L; Fossa P
    Chem Biol Drug Des; 2013 Dec; 82(6):718-31. PubMed ID: 23865680
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Role of Phosphodiesterase-2 in Psychiatric and Neurodegenerative Disorders.
    Zhang C; Lueptow LM; Zhang HT; O'Donnell JM; Xu Y
    Adv Neurobiol; 2017; 17():307-347. PubMed ID: 28956338
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pharmacophore modeling and virtual screening for the discovery of new type 4 cAMP phosphodiesterase (PDE4) inhibitors.
    Niu M; Dong F; Tang S; Fida G; Qin J; Qiu J; Liu K; Gao W; Gu Y
    PLoS One; 2013; 8(12):e82360. PubMed ID: 24340020
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Computational determination of binding structures and free energies of phosphodiesterase-2 with benzo[1,4]diazepin-2-one derivatives.
    Yang B; Hamza A; Chen G; Wang Y; Zhan CG
    J Phys Chem B; 2010 Dec; 114(48):16020-8. PubMed ID: 21077589
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phosphodiesterase 2 inhibition diminished acute lung injury in murine pneumococcal pneumonia.
    Witzenrath M; Gutbier B; Schmeck B; Tenor H; Seybold J; Kuelzer R; Grentzmann G; Hatzelmann A; van Laak V; Tschernig T; Mitchell TJ; Schudt C; Rosseau S; Suttorp N; Schütte H
    Crit Care Med; 2009 Feb; 37(2):584-90. PubMed ID: 19114892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.