These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23582350)

  • 1. Effects of chlorine and other water quality parameters on the release of silver nanoparticles from a ceramic surface.
    Bielefeldt AR; Stewart MW; Mansfield E; Scott Summers R; Ryan JN
    Water Res; 2013 Aug; 47(12):4032-9. PubMed ID: 23582350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of chlorination on silver elution from ceramic water filters.
    Lyon-Marion BA; Mittelman AM; Rayner J; Lantagne DS; Pennell KD
    Water Res; 2018 Oct; 142():471-479. PubMed ID: 29920457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane coated point-of-use ceramic water filters.
    Zhang H; Oyanedel-Craver V
    J Hazard Mater; 2013 Sep; 260():272-7. PubMed ID: 23770490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment.
    Ren D; Smith JA
    Environ Sci Technol; 2013 Apr; 47(8):3825-32. PubMed ID: 23496137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering.
    Marsich L; Bonifacio A; Mandal S; Krol S; Beleites C; Sergo V
    Langmuir; 2012 Sep; 28(37):13166-71. PubMed ID: 22958086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver Dissolution and Release from Ceramic Water Filters.
    Mittelman AM; Lantagne DS; Rayner J; Pennell KD
    Environ Sci Technol; 2015 Jul; 49(14):8515-22. PubMed ID: 26068303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilevel modeling of retention and disinfection efficacy of silver nanoparticles on ceramic water filters.
    Mikelonis AM; Lawler DF; Passalacqua P
    Sci Total Environ; 2016 Oct; 566-567():368-377. PubMed ID: 27232964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the parameters affecting the adsorption of amino acids onto AgCl nanoparticles with different surface charges.
    Absalan G; Ghaemi M
    Amino Acids; 2012 Nov; 43(5):1955-67. PubMed ID: 22491826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone.
    Bärsch N; Jakobi J; Weiler S; Barcikowski S
    Nanotechnology; 2009 Nov; 20(44):445603. PubMed ID: 19801779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment.
    van der Laan H; van Halem D; Smeets PW; Soppe AI; Kroesbergen J; Wubbels G; Nederstigt J; Gensburger I; Heijman SG
    Water Res; 2014 Mar; 51():47-54. PubMed ID: 24388830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.
    El Badawy AM; Luxton TP; Silva RG; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2010 Feb; 44(4):1260-6. PubMed ID: 20099802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers.
    Zhang H; Smith JA; Oyanedel-Craver V
    Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled release of silver nanoparticles from monolayers deposited on PAH covered mica.
    Oćwieja M; Adamczyk Z
    Langmuir; 2013 Mar; 29(11):3546-55. PubMed ID: 23320387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous ceramic tablet embedded with silver nanopatches for low-cost point-of-use water purification.
    Ehdaie B; Krause C; Smith JA
    Environ Sci Technol; 2014 Dec; 48(23):13901-8. PubMed ID: 25387099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ionic liquid impurities on the synthesis of silver nanoparticles.
    Lazarus LL; Riche CT; Malmstadt N; Brutchey RL
    Langmuir; 2012 Nov; 28(45):15987-93. PubMed ID: 23092200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles.
    Liu Y; Rosenfield E; Hu M; Mi B
    Water Res; 2013 Jun; 47(9):2949-58. PubMed ID: 23561495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the origin of released Ag+ ions from nanosilver.
    Sotiriou GA; Meyer A; Knijnenburg JT; Panke S; Pratsinis SE
    Langmuir; 2012 Nov; 28(45):15929-36. PubMed ID: 23072572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of silver nanoparticles (AgNPs) in soil.
    Sagee O; Dror I; Berkowitz B
    Chemosphere; 2012 Jul; 88(5):670-5. PubMed ID: 22516207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of specific attachment of proteins by adsorption of polymer layers.
    Erol M; Du H; Sukhishvili S
    Langmuir; 2006 Dec; 22(26):11329-36. PubMed ID: 17154622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers.
    Oćwieja M; Adamczyk Z; Morga M; Michna A
    J Colloid Interface Sci; 2011 Dec; 364(1):39-48. PubMed ID: 21889157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.