These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23582429)

  • 1. Large animal models in fusionless scoliosis correction research: a literature review.
    Roth AK; Bogie R; Jacobs E; Arts JJ; van Rhijn LW
    Spine J; 2013 Jun; 13(6):675-88. PubMed ID: 23582429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porcine spine finite element model: a complementary tool to experimental scoliosis fusionless instrumentation.
    Hachem B; Aubin CE; Parent S
    Eur Spine J; 2017 Jun; 26(6):1610-1617. PubMed ID: 28070685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Development of a Representative Porcine Early-Onset Scoliosis Model With a Standalone Posterior Spinal Tether.
    Bogie R; Roth AK; Willems PC; Weegen W; Arts JJ; van Rhijn LW
    Spine Deform; 2017 Jan; 5(1):2-10. PubMed ID: 28038690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model.
    Braun JT; Hoffman M; Akyuz E; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 May; 31(12):1314-20. PubMed ID: 16721292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of animal models in fusionless scoliosis investigations.
    Braun JT; Akyuz E; Ogilvie JW
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S35-45. PubMed ID: 16138065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional analysis of 2 fusionless scoliosis treatments: a flexible ligament tether versus a rigid-shape memory alloy staple.
    Braun JT; Akyuz E; Udall H; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 Feb; 31(3):262-8. PubMed ID: 16449897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether.
    Braun JT; Ogilvie JW; Akyuz E; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 Jun; 31(13):1410-4. PubMed ID: 16741447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Hemi-Staple for the Fusionless Correction of Pediatric Scoliosis: Influence on Intervertebral Disks and Growth Plates in a Porcine Model.
    Driscoll M; Aubin CÉ; Moreau A; Wakula Y; Amini S; Parent S
    Clin Spine Surg; 2016 Nov; 29(9):457-464. PubMed ID: 27755203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of two clinically relevant fusionless scoliosis implant strategies on the health of the intervertebral disc: analysis in an immature goat model.
    Hunt KJ; Braun JT; Christensen BA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):371-7. PubMed ID: 20110838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusionless surgery for scoliosis.
    Hershman SH; Park JJ; Lonner BS
    Bull Hosp Jt Dis (2013); 2013; 71(1):49-53. PubMed ID: 24032583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilevel spinal growth modulation with an anterolateral flexible tether in an immature bovine model.
    Newton PO; Faro FD; Farnsworth CL; Shapiro GS; Mohamad F; Parent S; Fricka K
    Spine (Phila Pa 1976); 2005 Dec; 30(23):2608-13. PubMed ID: 16319746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel fusionless vertebral physeal device inducing spinal growth modulation for the correction of spinal deformities.
    Schmid EC; Aubin CE; Moreau A; Sarwark J; Parent S
    Eur Spine J; 2008 Oct; 17(10):1329-35. PubMed ID: 18712419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A porcine model for progressive thoracic scoliosis.
    Schwab F; Patel A; Lafage V; Farcy JP
    Spine (Phila Pa 1976); 2009 May; 34(11):E397-404. PubMed ID: 19444053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research advancement of three-dimensional correction techniques of idiopathic scoliosis].
    Sun L; Song Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):421-4. PubMed ID: 22568320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is anterior release necessary in severe scoliosis treated by posterior segmental pedicle screw fixation?
    Suk SI; Kim JH; Cho KJ; Kim SS; Lee JJ; Han YT
    Eur Spine J; 2007 Sep; 16(9):1359-65. PubMed ID: 17334792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The feasibility, safety, and utility of vertebral wedge osteotomies for the fusionless treatment of paralytic scoliosis.
    Guille JT; Betz RR; Balsara RK; Mulcahey MJ; D'Andrea LP; Clements DH
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S266-74. PubMed ID: 14560202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the intervertebral disc in correction of scoliotic curves. A theoretical model of idiopathic scoliosis pathogenesis.
    Grivas TB; Vasiliadis ES; Rodopoulos G; Bardakos N
    Stud Health Technol Inform; 2008; 140():33-6. PubMed ID: 18809995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal growth modulation using a novel intravertebral epiphyseal device in an immature porcine model.
    Driscoll M; Aubin CE; Moreau A; Wakula Y; Sarwark JF; Parent S
    Eur Spine J; 2012 Jan; 21(1):138-44. PubMed ID: 21858726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclically controlled vertebral body tethering for scoliosis: an in vivo verification in a pig model of the pressure exerted on vertebral end plates.
    Lalande V; Villemure I; Vonthron M; Parent S; Aubin CÉ
    Spine Deform; 2020 Feb; 8(1):39-44. PubMed ID: 31981151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.