These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23582455)

  • 1. Functional genomics based understanding of rice endosperm development.
    Zhou SR; Yin LL; Xue HW
    Curr Opin Plant Biol; 2013 May; 16(2):236-46. PubMed ID: 23582455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OsNF-YB1, a rice endosperm-specific gene, is essential for cell proliferation in endosperm development.
    Sun X; Ling S; Lu Z; Ouyang YD; Liu S; Yao J
    Gene; 2014 Nov; 551(2):214-21. PubMed ID: 25178525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated proteomic and cytological study of rice endosperms at the storage phase.
    Xu SB; Yu HT; Yan LF; Wang T
    J Proteome Res; 2010 Oct; 9(10):4906-18. PubMed ID: 20712379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteomic study reveals the involvement of diurnal cycle in cell division, enlargement, and starch accumulation in developing endosperm of Oryza sativa.
    Yu HT; Xu SB; Zheng CH; Wang T
    J Proteome Res; 2012 Jan; 11(1):359-71. PubMed ID: 22053951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of endosperm-specific genes in rice.
    Nie DM; Ouyang YD; Wang X; Zhou W; Hu CG; Yao J
    Gene; 2013 Nov; 530(2):236-47. PubMed ID: 23948082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm.
    Wakasa Y; Yasuda H; Oono Y; Kawakatsu T; Hirose S; Takahashi H; Hayashi S; Yang L; Takaiwa F
    Plant J; 2011 Mar; 65(5):675-89. PubMed ID: 21223397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-depth proteomic analysis of rice embryo reveals its important roles in seed germination.
    Han C; He D; Li M; Yang P
    Plant Cell Physiol; 2014 Oct; 55(10):1826-47. PubMed ID: 25231964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome p450.
    Yang W; Gao M; Yin X; Liu J; Xu Y; Zeng L; Li Q; Zhang S; Wang J; Zhang X; He Z
    Mol Plant; 2013 Nov; 6(6):1945-60. PubMed ID: 23775595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser microdissection transcriptome data derived gene regulatory networks of developing rice endosperm revealed tissue- and stage-specific regulators modulating starch metabolism.
    Ishimaru T; Parween S; Saito Y; Masumura T; Kondo M; Sreenivasulu N
    Plant Mol Biol; 2022 Mar; 108(4-5):443-467. PubMed ID: 35098404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice caryopsis development II: Dynamic changes in the endosperm.
    Wu X; Liu J; Li D; Liu CM
    J Integr Plant Biol; 2016 Sep; 58(9):786-98. PubMed ID: 27449987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global identification of significantly expressed genes in developing endosperm of rice by expression sequence tags and cDNA array approaches.
    Tu Q; Dong H; Yao H; Fang Y; Dai C; Luo H; Yao J; Zhao D; Li D
    J Integr Plant Biol; 2008 Sep; 50(9):1078-88. PubMed ID: 18844776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa).
    Zhang J; Nallamilli BR; Mujahid H; Peng Z
    Plant J; 2010 Nov; 64(4):604-17. PubMed ID: 20822505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds?
    Matsuno K; Fujimura T
    Mol Genet Genomics; 2015 Aug; 290(4):1551-62. PubMed ID: 25732383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression profiling of genes involved in starch synthesis in sink and source organs of rice.
    Ohdan T; Francisco PB; Sawada T; Hirose T; Terao T; Satoh H; Nakamura Y
    J Exp Bot; 2005 Dec; 56(422):3229-44. PubMed ID: 16275672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice.
    Kawakatsu T; Yamamoto MP; Touno SM; Yasuda H; Takaiwa F
    Plant J; 2009 Sep; 59(6):908-20. PubMed ID: 19473328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.
    Yu G; Olsen KM; Schaal BA
    Mol Biol Evol; 2011 Jan; 28(1):659-71. PubMed ID: 20829346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of promoters in transgenic rice.
    Furtado A; Henry RJ; Takaiwa F
    Plant Biotechnol J; 2008 Sep; 6(7):679-93. PubMed ID: 18503501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rice interspecies hybrids show precocious or delayed developmental transitions in the endosperm without change to the rate of syncytial nuclear division.
    Ishikawa R; Ohnishi T; Kinoshita Y; Eiguchi M; Kurata N; Kinoshita T
    Plant J; 2011 Mar; 65(5):798-806. PubMed ID: 21251103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase.
    Smidansky ED; Martin JM; Hannah LC; Fischer AM; Giroux MJ
    Planta; 2003 Feb; 216(4):656-64. PubMed ID: 12569408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain.
    Kawakatsu T; Takaiwa F
    Plant Cell Physiol; 2010 Dec; 51(12):1964-74. PubMed ID: 21037241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.