BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23583005)

  • 1. Comparative biomechanical analysis of human and caprine knee articular cartilage.
    Patil S; Steklov N; Song L; Bae WC; D'Lima DD
    Knee; 2014 Jan; 21(1):119-25. PubMed ID: 23583005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Articular contact pressures of meniscal repair techniques at various knee flexion angles.
    Flanigan DC; Lin F; Koh JL; Zhang LQ
    Orthopedics; 2010 Jul; 33(7):475. PubMed ID: 20608634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models.
    Li G; DeFrate LE; Park SE; Gill TJ; Rubash HE
    Am J Sports Med; 2005 Jan; 33(1):102-7. PubMed ID: 15611005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weight-bearing MRI of patellofemoral joint cartilage contact area.
    Gold GE; Besier TF; Draper CE; Asakawa DS; Delp SL; Beaupre GS
    J Magn Reson Imaging; 2004 Sep; 20(3):526-30. PubMed ID: 15332263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patellofemoral joint contact area increases with knee flexion and weight-bearing.
    Besier TF; Draper CE; Gold GE; Beaupré GS; Delp SL
    J Orthop Res; 2005 Mar; 23(2):345-50. PubMed ID: 15734247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional in situ assessment of human articular cartilage using MRI: a whole-knee joint loading device.
    Nebelung S; Post M; Raith S; Fischer H; Knobe M; Braun B; Prescher A; Tingart M; Thüring J; Bruners P; Jahr H; Kuhl C; Truhn D
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1971-1986. PubMed ID: 28685238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gender differences in patellofemoral joint biomechanics.
    Csintalan RP; Schulz MM; Woo J; McMahon PJ; Lee TQ
    Clin Orthop Relat Res; 2002 Sep; (402):260-9. PubMed ID: 12218492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo cartilage contact deformation in the healthy human tibiofemoral joint.
    Bingham JT; Papannagari R; Van de Velde SK; Gross C; Gill TJ; Felson DT; Rubash HE; Li G
    Rheumatology (Oxford); 2008 Nov; 47(11):1622-7. PubMed ID: 18775967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee.
    Frisbie DD; Cross MW; McIlwraith CW
    Vet Comp Orthop Traumatol; 2006; 19(3):142-6. PubMed ID: 16971996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004.
    Agneskirchner JD; Hurschler C; Stukenborg-Colsman C; Imhoff AB; Lobenhoffer P
    Arch Orthop Trauma Surg; 2004 Nov; 124(9):575-84. PubMed ID: 15480717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults.
    Van Rossom S; Smith CR; Zevenbergen L; Thelen DG; Vanwanseele B; Van Assche D; Jonkers I
    PLoS One; 2017; 12(1):e0170002. PubMed ID: 28076431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of in-vivo articular cartilage contact surface of the knee during a step-up motion.
    Yin P; Li JS; Kernkamp WA; Tsai TY; Baek SH; Hosseini A; Lin L; Tang P; Li G
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():101-106. PubMed ID: 28910722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo kinematics of the knee during weight bearing high flexion.
    Qi W; Hosseini A; Tsai TY; Li JS; Rubash HE; Li G
    J Biomech; 2013 May; 46(9):1576-82. PubMed ID: 23591448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo tibiofemoral contact analysis using 3D MRI-based knee models.
    DeFrate LE; Sun H; Gill TJ; Rubash HE; Li G
    J Biomech; 2004 Oct; 37(10):1499-504. PubMed ID: 15336924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties.
    Kurkijärvi JE; Nissi MJ; Kiviranta I; Jurvelin JS; Nieminen MT
    Magn Reson Med; 2004 Jul; 52(1):41-6. PubMed ID: 15236365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. American Society of Biomechanics Clinical Biomechanics Award 2013: tibiofemoral contact location changes associated with lateral heel wedging--a weight bearing MRI study.
    Barrance PJ; Gade V; Allen J; Cole JL
    Clin Biomech (Bristol, Avon); 2014 Nov; 29(9):997-1002. PubMed ID: 25280456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact stresses in the knee joint in deep flexion.
    Thambyah A; Goh JC; De SD
    Med Eng Phys; 2005 May; 27(4):329-35. PubMed ID: 15823474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage.
    Athanasiou KA; Rosenwasser MP; Buckwalter JA; Malinin TI; Mow VC
    J Orthop Res; 1991 May; 9(3):330-40. PubMed ID: 2010837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-steady-state displacement response of whole human cadaveric knees in a MRI scanner.
    Martin KJ; Neu CP; Hull ML
    J Biomech Eng; 2009 Aug; 131(8):081004. PubMed ID: 19604016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loading and knee alignment have significant influence on cartilage MRI T2 in porcine knee joints.
    Shiomi T; Nishii T; Tanaka H; Yamazaki Y; Murase K; Myoui A; Yoshikawa H; Sugano N
    Osteoarthritis Cartilage; 2010 Jul; 18(7):902-8. PubMed ID: 20472084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.