BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 2358302)

  • 1. On-line sorting of human chromosomes by centromeric index, and identification of sorted populations by GTG-banding and fluorescent in situ hybridization.
    Boschman GA; Rens W; Manders E; van Oven C; Barendsen GW; Aten JA
    Hum Genet; 1990 Jun; 85(1):41-8. PubMed ID: 2358302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and cytogenetic analysis of an abnormal pig chromosome for flow cytometry and sorting.
    Hausmann M; Popescu CP; Boscher J; Kerboeuf D; Dölle J; Cremer C
    Z Naturforsch C J Biosci; 1993; 48(7-8):645-53. PubMed ID: 8216615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of flow-sorted chromosomes by G-banding and in situ hybridization.
    Rommel B; Hutter KJ; Bullerdiek J; Bartnitzke S; Goerttler K; Schloot W
    Cytometry; 1988 Sep; 9(5):504-7. PubMed ID: 3180953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome banding analysis by slit-scan flow cytometry.
    Bartholdi MF; Meyne J; Johnston RG; Cram LS
    Cytometry; 1989 Mar; 10(2):124-33. PubMed ID: 2496955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei.
    van Dekken H; Arkesteijn GJ; Visser JW; Bauman JG
    Cytometry; 1990; 11(1):153-64. PubMed ID: 2307056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Uniparametric analysis of chromosomes from human fibroblasts using flow cytofluorometry].
    Nasedkina TV; Poltorykhin SA; Slezinger SI; Poletaev AI
    Mol Biol (Mosk); 1994; 28(1):184-90. PubMed ID: 8145747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.
    Trask B; van den Engh G; Mayall B; Gray JW
    Am J Hum Genet; 1989 Nov; 45(5):739-52. PubMed ID: 2479266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined GTG-banding and nonradioactive in situ hybridization improves characterization of complex karyotypes.
    Smit VT; Wessels JW; Mollevanger P; Schrier PI; Raap AK; Beverstock GC; Cornelisse CJ
    Cytogenet Cell Genet; 1990; 54(1-2):20-3. PubMed ID: 2249470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparative dual-beam sorting of the human Y chromosome and in situ hybridization of cloned DNA probes.
    Cremer C; Rappold G; Gray JW; Müller CR; Ropers HH
    Cytometry; 1984 Nov; 5(6):572-9. PubMed ID: 6549159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bivariate flow karyotyping in broad bean (Vicia faba).
    Lucretti S; Dolezel J
    Cytometry; 1997 Jul; 28(3):236-42. PubMed ID: 9222109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centromeric index versus DNA content flow karyotypes of human chromosomes measured by means of slit-scan flow cytometry.
    Lucas JN; Gray JW
    Cytometry; 1987 May; 8(3):273-9. PubMed ID: 3595351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes.
    Aten JA; Buys CH; van der Veen AY; Mesa JR; Yu LC; Gray JW; Osinga J; Stap J
    Histochemistry; 1987; 87(4):359-66. PubMed ID: 3692916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatid contamination can impair the purity of flow-sorted metaphase chromosomes.
    Telenius H; de Vos D; Blennow E; Willat LR; Ponder BA; Carter NP
    Cytometry; 1993; 14(1):97-101. PubMed ID: 8432210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of five high-complexity painting probe libraries from flow-sorted mouse chromosomes.
    Weier HU; Polikoff D; Fawcett JJ; Greulich KM; Lee KH; Cram S; Chapman VM; Gray JW
    Genomics; 1994 Jun; 21(3):641-4. PubMed ID: 7959744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slit-scanning technique using standard cell sorter instruments for analyzing and sorting nonacrocentric human chromosomes, including small ones.
    Rens W; Van Oven CH; Stap J; Jakobs ME; Aten JA
    Cytometry; 1994 May; 16(1):80-7. PubMed ID: 8033738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of the chromosomes of the Indian muntjac by flow sorting.
    Carrano AV; Gray JW; Moore DH; Minkler JL; Mayall BH; van Dilla MA; Mendelsohn ML
    J Histochem Cytochem; 1976 Jan; 24(1):348-54. PubMed ID: 1254929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytogenetics.
    Bartholdi MF
    Pathobiology; 1990; 58(2):118-28. PubMed ID: 1694434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimising human chromosome separation for the production of chromosome-specific DNA libraries by flow sorting.
    Harris P; Boyd E; Ferguson-Smith MA
    Hum Genet; 1985; 70(1):59-65. PubMed ID: 2581883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization.
    Molnár I; Vrána J; Farkas A; Kubaláková M; Cseh A; Molnár-Láng M; Doležel J
    Ann Bot; 2015 Aug; 116(2):189-200. PubMed ID: 26043745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DNA-based human karyotype.
    Mayall BH; Carrano AV; Moore DH; Ashworth LK; Bennett DE; Mendelsohn ML
    Cytometry; 1984 Jul; 5(4):376-85. PubMed ID: 6205836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.