These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23583309)
1. Facile isolation of purple membrane from Halobacterium salinarum via aqueous-two-phase system. Shiu PJ; Ju YH; Chen HM; Lee CK Protein Expr Purif; 2013 Jun; 89(2):219-24. PubMed ID: 23583309 [TBL] [Abstract][Full Text] [Related]
2. Control of the integral membrane proton pump, bacteriorhodopsin, by purple membrane lipids of Halobacterium halobium. Mukhopadhyay AK; Dracheva S; Bose S; Hendler RW Biochemistry; 1996 Jul; 35(28):9245-52. PubMed ID: 8703930 [TBL] [Abstract][Full Text] [Related]
3. Asymmetric distribution of biotin labeling on the purple membrane. Su T; Zhong S; Zhang Y; Hu KS J Photochem Photobiol B; 2008 Aug; 92(2):123-7. PubMed ID: 18619849 [TBL] [Abstract][Full Text] [Related]
4. A new class of purple membrane variants for the construction of highly oriented membrane assemblies on the basis of noncovalent interactions. Baumann RP; Busch AP; Heidel B; Hampp N J Phys Chem B; 2012 Apr; 116(14):4134-40. PubMed ID: 22420766 [TBL] [Abstract][Full Text] [Related]
5. Glycolipid biotinylation on purple membrane with maintained bioactivity. Xiang Y; Yang M; Su T; Chen Y; Bi L; Hu K J Phys Chem B; 2009 Jun; 113(22):7762-6. PubMed ID: 19438182 [TBL] [Abstract][Full Text] [Related]
6. pH-dependent bending in and out of purple membranes comprising BR-D85T. Baumann RP; Eussner J; Hampp N Phys Chem Chem Phys; 2011 Dec; 13(48):21375-82. PubMed ID: 22033510 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of oriented poly-L-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response. Li R; Cui X; Hu W; Lu Z; Li CM J Colloid Interface Sci; 2010 Apr; 344(1):150-7. PubMed ID: 20056227 [TBL] [Abstract][Full Text] [Related]
8. Binding of Fe3+ ions to halobacterial purple membranes as studied by Mössbauer spectroscopy. Maximychev AV; Kostyuchenko IG; Chibirova FKh; Zhilinskaya EA; Chekulaeva LN; Timashev SF Membr Cell Biol; 1997; 10(5):487-501. PubMed ID: 9225253 [TBL] [Abstract][Full Text] [Related]
9. Relationship between structure, dynamics and function of hydrated purple membrane investigated by neutron scattering and dielectric spectroscopy. Buchsteiner A; Lechner RE; Hauss T; Dencher NA J Mol Biol; 2007 Aug; 371(4):914-23. PubMed ID: 17599349 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale distinction of membrane patches--a TERS study of Halobacterium salinarum. Deckert-Gaudig T; Böhme R; Freier E; Sebesta A; Merkendorf T; Popp J; Gerwert K; Deckert V J Biophotonics; 2012 Jul; 5(7):582-91. PubMed ID: 22371320 [TBL] [Abstract][Full Text] [Related]
11. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content. Rhinow D; Hampp N J Phys Chem B; 2010 Jan; 114(1):549-56. PubMed ID: 19908872 [TBL] [Abstract][Full Text] [Related]
12. Insight into a single halobacterium using a dual-bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Fu HY; Yi HP; Lu YH; Yang CS Mol Microbiol; 2013 May; 88(3):551-61. PubMed ID: 23565724 [TBL] [Abstract][Full Text] [Related]
13. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots. Rakovich A; Sukhanova A; Bouchonville N; Lukashev E; Oleinikov V; Artemyev M; Lesnyak V; Gaponik N; Molinari M; Troyon M; Rakovich YP; Donegan JF; Nabiev I Nano Lett; 2010 Jul; 10(7):2640-8. PubMed ID: 20521831 [TBL] [Abstract][Full Text] [Related]
14. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. Yamashita H; Inoue K; Shibata M; Uchihashi T; Sasaki J; Kandori H; Ando T J Struct Biol; 2013 Oct; 184(1):2-11. PubMed ID: 23462099 [TBL] [Abstract][Full Text] [Related]
15. Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching. Rhinow D; Imhof M; Chizhik I; Baumann RP; Hampp N J Phys Chem B; 2012 Jun; 116(25):7455-62. PubMed ID: 22512248 [TBL] [Abstract][Full Text] [Related]
16. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins. Tóth-Boconádi R; Dér A; Keszthelyi L Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739 [TBL] [Abstract][Full Text] [Related]
17. The nature of thermal transitions in purple membranes from Halobacterium halobium. Shnyrov VL; Azuaga AI; Mateo PL Biochem Soc Trans; 1994 Aug; 22(3):367S. PubMed ID: 7821619 [No Abstract] [Full Text] [Related]
18. Culture temperature affects the molecular motion of bacteriorhodopsin within the purple membrane. Kikukawa T; Araiso T; Mukasa K; Shimozawa T; Kamo N Chem Pharm Bull (Tokyo); 1996 Mar; 44(3):473-6. PubMed ID: 8882448 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of bacteriorhodopsin in solid-supported purple membranes studied with tapping-mode atomic force microscopy. Schranz M; Baumann RP; Rhinow D; Hampp N J Phys Chem B; 2010 Jul; 114(27):9047-53. PubMed ID: 20509702 [TBL] [Abstract][Full Text] [Related]
20. Sensitive detection of protein-lipid interaction change on bacteriorhodopsin using dodecyl β-D-maltoside. Sasaki T; Demura M; Kato N; Mukai Y Biochemistry; 2011 Mar; 50(12):2283-90. PubMed ID: 21314119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]