These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 23583471)

  • 1. An intrinsic CRF signaling system within the optic tectum.
    Carr JA; Zhang B; Li W; Gao M; Garcia C; Lustgarten J; Wages M; Smith EE
    Gen Comp Endocrinol; 2013 Jul; 188():204-11. PubMed ID: 23583471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tectal corticotropin-releasing factor (CRF) neurons respond to fasting and a reactive stressor in the African Clawed Frog, Xenopus laevis.
    Prater CM; Garcia C; McGuire LP; Carr JA
    Gen Comp Endocrinol; 2018 Mar; 258():91-98. PubMed ID: 28774755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis.
    Prater CM; Harris BN; Carr JA
    Horm Behav; 2018 Sep; 105():86-94. PubMed ID: 30077740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The organization of CRF neuronal pathways in toads: Evidence that retinal afferents do not contribute significantly to tectal CRF content.
    Carr JA; Lustgarten J; Ahmed N; Bergfeld N; Bulin SE; Shoukfeh O; Tripathy S
    Brain Behav Evol; 2010; 76(1):71-86. PubMed ID: 20926857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis.
    Crespi EJ; Vaudry H; Denver RJ
    J Neuroendocrinol; 2004 Mar; 16(3):279-88. PubMed ID: 15049859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis.
    Prater CM; Harris BN; Carr JA
    Horm Behav; 2020 Apr; 120():104707. PubMed ID: 32001211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Larval development of tectal efferents and afferents in Xenopus laevis (Amphibia Anura).
    Chahoud BH; Cordier-Picouet MJ; Clairambault P
    J Hirnforsch; 1996; 37(4):519-35. PubMed ID: 8982811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of GABA-like immunoreactive cell bodies in the brains of two amphibians, Rana catesbeiana and Xenopus laevis.
    Hollis DM; Boyd SK
    Brain Behav Evol; 2005; 65(2):127-42. PubMed ID: 15627724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroendocrine modulation of predator avoidance/prey capture tradeoffs: Role of tectal NPY2R receptors.
    Islam R; Prater CM; Harris BN; Carr JA
    Gen Comp Endocrinol; 2019 Oct; 282():113214. PubMed ID: 31271760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Region-specific contribution of ephrin-B and Wnt signaling to receptive field plasticity in developing optic tectum.
    Lim BK; Cho SJ; Sumbre G; Poo MM
    Neuron; 2010 Mar; 65(6):899-911. PubMed ID: 20346764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of melatonin receptors decreases calcium levels in xenopus tectal cells by activating GABA(C) receptors.
    Prada C; Udin SB; Wiechmann AF; Zhdanova IV
    J Neurophysiol; 2005 Aug; 94(2):968-78. PubMed ID: 15817645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urocortin 1 inhibits guinea pig gallbladder contractility in vitro via corticotropin-releasing factor receptor 2.
    Abd El-Aziz SM; Abdel-Wahab BA
    Can J Physiol Pharmacol; 2011 Nov; 89(11):783-91. PubMed ID: 22007876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in brain-derived neurotrophic factor and trkB receptor in the adult Rana pipiens retina and optic tectum after optic nerve injury.
    Duprey-Díaz MV; Soto I; Blagburn JM; Blanco RE
    J Comp Neurol; 2002 Dec; 454(4):456-69. PubMed ID: 12455009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of corticotropin-releasing factor on food intake in the bullfrog, Aquarana catesbeiana.
    Morimoto N; Hashimoto K; Okada R; Mochida H; Uchiyama M; Kikuyama S; Matsuda K
    Peptides; 2011 Sep; 32(9):1872-5. PubMed ID: 21864603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Afferents of the lamprey optic tectum with special reference to the GABA input: combined tracing and immunohistochemical study.
    Robertson B; Saitoh K; Ménard A; Grillner S
    J Comp Neurol; 2006 Nov; 499(1):106-19. PubMed ID: 16958107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute stress inhibits food intake and alters ghrelin signaling in the brain of tilapia (Oreochromis mossambicus).
    Upton KR; Riley LG
    Domest Anim Endocrinol; 2013 Apr; 44(3):157-64. PubMed ID: 23291012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation.
    Hirsch N; Harris WA
    Invest Ophthalmol Vis Sci; 1997 Apr; 38(5):960-9. PubMed ID: 9112992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticotropin-releasing factor (CRF) receptor subtypes in mediating neuronal activation of brain areas involved in responses to intracerebroventricular CRF and stress in rats.
    Takahashi C; Ohata H; Shibasaki T
    Peptides; 2011 Dec; 32(12):2384-93. PubMed ID: 21964377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valproic acid inhibits corticotropin-releasing factor synthesis and release from the rat hypothalamus in vitro: evidence for the involvement of GABAergic neurotransmission.
    Tringali G; Aubry JM; Moscianese K; Zamori C; Vairano M; Preziosi P; Navarra P; Pozzoli G
    J Psychiatry Neurosci; 2004 Nov; 29(6):459-66. PubMed ID: 15644987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human placenta, chorion, amnion and decidua express different variants of corticotropin-releasing factor receptor messenger RNA.
    Florio P; Franchini A; Reis FM; Pezzani I; Ottaviani E; Petraglia F
    Placenta; 2000 Jan; 21(1):32-7. PubMed ID: 10692248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.