BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23583522)

  • 1. Role of skeletal muscle proteoglycans during myogenesis.
    Brandan E; Gutierrez J
    Matrix Biol; 2013 Aug; 32(6):289-97. PubMed ID: 23583522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration.
    Cornelison DD; Filla MS; Stanley HM; Rapraeger AC; Olwin BB
    Dev Biol; 2001 Nov; 239(1):79-94. PubMed ID: 11784020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of proteoglycans in the regulation of the skeletal muscle fibrotic response.
    Brandan E; Gutierrez J
    FEBS J; 2013 Sep; 280(17):4109-17. PubMed ID: 23560928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic regulation of skeletal muscle development and differentiation.
    Bharathy N; Ling BM; Taneja R
    Subcell Biochem; 2013; 61():139-50. PubMed ID: 23150250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation.
    Casar JC; Cabello-Verrugio C; Olguin H; Aldunate R; Inestrosa NC; Brandan E
    J Cell Sci; 2004 Jan; 117(Pt 1):73-84. PubMed ID: 14627628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meat Science and Muscle Biology Symposium: extracellular matrix regulation of skeletal muscle formation.
    Velleman SG
    J Anim Sci; 2012 Mar; 90(3):936-41. PubMed ID: 21890503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses.
    Côté PD; Moukhles H; Lindenbaum M; Carbonetto S
    Nat Genet; 1999 Nov; 23(3):338-42. PubMed ID: 10610181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling.
    Gurevich D; Siegel A; Currie PD
    Results Probl Cell Differ; 2015; 56():49-76. PubMed ID: 25344666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laminin regulates PDGFRβ(+) cell stemness and muscle development.
    Yao Y; Norris EH; Mason CE; Strickland S
    Nat Commun; 2016 May; 7():11415. PubMed ID: 27138650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormal expression of proteoglycans in Ullrich's disease with collagen VI deficiency.
    Higashi K; Higuchi I; Niiyama T; Uchida Y; Shiraishi T; Hashiguchi A; Saito A; Horikiri T; Suehara M; Arimura K; Osame M
    Muscle Nerve; 2006 Jan; 33(1):120-6. PubMed ID: 16258947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix glycosaminoglycans in the growth phase of fibroblasts: more of the story in wound healing.
    Kosir MA; Quinn CC; Wang W; Tromp G
    J Surg Res; 2000 Jul; 92(1):45-52. PubMed ID: 10864481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A synthetic glycosaminoglycan mimetic (RGTA) modifies natural glycosaminoglycan species during myogenesis.
    Barbosa I; Morin C; Garcia S; Duchesnay A; Oudghir M; Jenniskens G; Miao HQ; Guimond S; Carpentier G; Cebrian J; Caruelle JP; van Kuppevelt T; Turnbull J; Martelly I; Papy-Garcia D
    J Cell Sci; 2005 Jan; 118(Pt 1):253-64. PubMed ID: 15615789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation.
    Droguett R; Cabello-Verrugio C; Riquelme C; Brandan E
    Matrix Biol; 2006 Aug; 25(6):332-41. PubMed ID: 16766169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of protein function by glycosaminoglycans--as exemplified by chemokines.
    Handel TM; Johnson Z; Crown SE; Lau EK; Proudfoot AE
    Annu Rev Biochem; 2005; 74():385-410. PubMed ID: 15952892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defects in neuromuscular junction structure in dystrophic muscle are corrected by expression of a NOS transgene in dystrophin-deficient muscles, but not in muscles lacking alpha- and beta1-syntrophins.
    Shiao T; Fond A; Deng B; Wehling-Henricks M; Adams ME; Froehner SC; Tidball JG
    Hum Mol Genet; 2004 Sep; 13(17):1873-84. PubMed ID: 15238508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brief report: Blockade of Notch signaling in muscle stem cells causes muscular dystrophic phenotype and impaired muscle regeneration.
    Lin S; Shen H; Jin B; Gu Y; Chen Z; Cao C; Hu C; Keller C; Pear WS; Wu L
    Stem Cells; 2013 Apr; 31(4):823-8. PubMed ID: 23307608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective neuromuscular junction organization and postnatal myogenesis in mice with severe spinal muscular atrophy.
    Dachs E; Hereu M; Piedrafita L; Casanovas A; Calderó J; Esquerda JE
    J Neuropathol Exp Neurol; 2011 Jun; 70(6):444-61. PubMed ID: 21572339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation and functional significance of utrophin expression at the mammalian neuromuscular synapse.
    Gramolini AO; Wu J; Jasmin BJ
    Microsc Res Tech; 2000 Apr; 49(1):90-100. PubMed ID: 10757882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscular dystrophies: an update on pathology and diagnosis.
    Sewry CA
    Acta Neuropathol; 2010 Sep; 120(3):343-58. PubMed ID: 20652576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular control of muscle diversity and plasticity.
    Buonanno A; Rosenthal N
    Dev Genet; 1996; 19(2):95-107. PubMed ID: 8900042
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.