These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23583802)

  • 1. Dietary nimodipine delays the onset of methylmercury neurotoxicity in mice.
    Bailey JM; Hutsell BA; Newland MC
    Neurotoxicology; 2013 Jul; 37():108-17. PubMed ID: 23583802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging, motor function, and sensitivity to calcium channel blockers: An investigation using chronic methylmercury exposure.
    Shen AN; Cummings C; Hoffman D; Pope D; Arnold M; Newland MC
    Behav Brain Res; 2016 Dec; 315():103-14. PubMed ID: 27481695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microstructural analysis distinguishes motor and motivational influences over voluntary running in animals chronically exposed to methylmercury and nimodipine.
    Hoffman DJ; Newland MC
    Neurotoxicology; 2016 May; 54():127-139. PubMed ID: 27095634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bout analysis reveals age-related methylmercury neurotoxicity and nimodipine neuroprotection.
    Shen AN; Cummings C; Pope D; Hoffman D; Newland MC
    Behav Brain Res; 2016 Sep; 311():147-159. PubMed ID: 27196441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental exposure to methylmercury and resultant muscle mercury accumulation and adult motor deficits in mice.
    Rand MD; Conrad K; Marvin E; Harvey K; Henderson D; Tawil R; Sobolewski M; Cory-Slechta DA
    Neurotoxicology; 2020 Dec; 81():1-10. PubMed ID: 32735808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary selenium protects against selected signs of aging and methylmercury exposure.
    Heath JC; Banna KM; Reed MN; Pesek EF; Cole N; Li J; Newland MC
    Neurotoxicology; 2010 Mar; 31(2):169-79. PubMed ID: 20079371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylmercury speciation influences brain gene expression and behavior in gestationally-exposed mice pups.
    Glover CN; Zheng D; Jayashankar S; Sales GD; Hogstrand C; Lundebye AK
    Toxicol Sci; 2009 Aug; 110(2):389-400. PubMed ID: 19465457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gestational exposure to methylmercury and n-3 fatty acids: effects on high- and low-rate operant behavior in adulthood.
    Paletz EM; Craig-Schmidt MC; Newland MC
    Neurotoxicol Teratol; 2006; 28(1):59-73. PubMed ID: 16413743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary and tissue selenium in relation to methylmercury toxicity.
    Ralston NV; Ralston CR; Blackwell JL; Raymond LJ
    Neurotoxicology; 2008 Sep; 29(5):802-11. PubMed ID: 18761370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response inhibition is impaired by developmental methylmercury exposure: acquisition of low-rate lever-pressing.
    Newland MC; Hoffman DJ; Heath JC; Donlin WD
    Behav Brain Res; 2013 Sep; 253():196-205. PubMed ID: 23721962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurobehavioral changes in mice chronically exposed to methylmercury during fetal and early postnatal development.
    Goulet S; Doré FY; Mirault ME
    Neurotoxicol Teratol; 2003; 25(3):335-47. PubMed ID: 12757830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice.
    Onishchenko N; Tamm C; Vahter M; Hökfelt T; Johnson JA; Johnson DA; Ceccatelli S
    Toxicol Sci; 2007 Jun; 97(2):428-37. PubMed ID: 17204583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does methylmercury-induced hypercholesterolemia play a causal role in its neurotoxicity and cardiovascular disease?
    Moreira EL; de Oliveira J; Dutra MF; Santos DB; Gonçalves CA; Goldfeder EM; de Bem AF; Prediger RD; Aschner M; Farina M
    Toxicol Sci; 2012 Dec; 130(2):373-82. PubMed ID: 22903822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: oxidative stress and down-regulated Na+/K(+)-ATPase involved.
    Huang CF; Hsu CJ; Liu SH; Lin-Shiau SY
    Toxicol Lett; 2008 Feb; 176(3):188-97. PubMed ID: 18191348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemokine CCL2 protects against methylmercury neurotoxicity.
    Godefroy D; Gosselin RD; Yasutake A; Fujimura M; Combadière C; Maury-Brachet R; Laclau M; Rakwal R; Melik-Parsadaniantz S; Bourdineaud JP; Rostène W
    Toxicol Sci; 2012 Jan; 125(1):209-18. PubMed ID: 21976372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination deficits induced in young adult mice treated with methylmercury.
    Bellum S; Thuett KA; Grajeda R; Abbott LC
    Int J Toxicol; 2007; 26(2):115-21. PubMed ID: 17454251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione-mediated neuroprotection against methylmercury neurotoxicity in cortical culture is dependent on MRP1.
    Rush T; Liu X; Nowakowski AB; Petering DH; Lobner D
    Neurotoxicology; 2012 Jun; 33(3):476-81. PubMed ID: 22464990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-consumption of selenium and vitamin E altered the reproductive and developmental toxicity of methylmercury in rats.
    Beyrouty P; Chan HM
    Neurotoxicol Teratol; 2006; 28(1):49-58. PubMed ID: 16427250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylmercury and nutrition: adult effects of fetal exposure in experimental models.
    Newland MC; Paletz EM; Reed MN
    Neurotoxicology; 2008 Sep; 29(5):783-801. PubMed ID: 18652843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effects of Polygala paniculata extract against methylmercury-induced neurotoxicity in mice.
    Farina M; Franco JL; Ribas CM; Meotti FC; Missau FC; Pizzolatti MG; Dafre AL; Santos AR
    J Pharm Pharmacol; 2005 Nov; 57(11):1503-8. PubMed ID: 16259784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.