BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23583912)

  • 1. The structure of yeast glutaminyl-tRNA synthetase and modeling of its interaction with tRNA.
    Grant TD; Luft JR; Wolfley JR; Snell ME; Tsuruta H; Corretore S; Quartley E; Phizicky EM; Grayhack EJ; Snell EH
    J Mol Biol; 2013 Jul; 425(14):2480-93. PubMed ID: 23583912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural conservation of an ancient tRNA sensor in eukaryotic glutaminyl-tRNA synthetase.
    Grant TD; Snell EH; Luft JR; Quartley E; Corretore S; Wolfley JR; Snell ME; Hadd A; Perona JJ; Phizicky EM; Grayhack EJ
    Nucleic Acids Res; 2012 Apr; 40(8):3723-31. PubMed ID: 22180531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation.
    Deniziak M; Sauter C; Becker HD; Paulus CA; Giegé R; Kern D
    Nucleic Acids Res; 2007; 35(5):1421-31. PubMed ID: 17284460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid-dependent transfer RNA affinity in a class I aminoacyl-tRNA synthetase.
    Uter NT; Gruic-Sovulj I; Perona JJ
    J Biol Chem; 2005 Jun; 280(25):23966-77. PubMed ID: 15845537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional analysis of Glutaminyl-tRNA synthetase (TtGlnRS) from Thermus thermophilus HB8 and its complexes.
    Nachiappan M; Jain V; Sharma A; Yogavel M; Jeyakanthan J
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1379-1386. PubMed ID: 30248426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rationally engineered misacylating aminoacyl-tRNA synthetase.
    Bullock TL; Rodríguez-Hernández A; Corigliano EM; Perona JJ
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7428-33. PubMed ID: 18477696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases.
    Hadd A; Perona JJ
    J Mol Biol; 2014 Oct; 426(21):3619-33. PubMed ID: 25149203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain.
    Chang CP; Lin G; Chen SJ; Chiu WC; Chen WH; Wang CC
    J Biol Chem; 2008 Nov; 283(45):30699-706. PubMed ID: 18755686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of human GlnRS provides basis for the development of neurological disorders.
    Ognjenović J; Wu J; Matthies D; Baxa U; Subramaniam S; Ling J; Simonović M
    Nucleic Acids Res; 2016 Apr; 44(7):3420-31. PubMed ID: 26869582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. tRNA-dependent active site assembly in a class I aminoacyl-tRNA synthetase.
    Sherlin LD; Perona JJ
    Structure; 2003 May; 11(5):591-603. PubMed ID: 12737824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation.
    Fu Y; Kim Y; Jin KS; Kim HS; Kim JH; Wang D; Park M; Jo CH; Kwon NH; Kim D; Kim MH; Jeon YH; Hwang KY; Kim S; Cho Y
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15084-9. PubMed ID: 25288775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational dynamics of transfer RNAs: comparison of the free and synthetase-bound forms.
    Bahar I; Jernigan RL
    J Mol Biol; 1998 Sep; 281(5):871-84. PubMed ID: 9719641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescence spectroscopic study of substrate-induced conformational changes in glutaminyl-tRNA synthetase.
    Bhattacharyya T; Roy S
    Biochemistry; 1993 Sep; 32(36):9268-73. PubMed ID: 8369295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutaminyl-tRNA Synthetase from Pseudomonas aeruginosa: Characterization, structure, and development as a screening platform.
    Escamilla Y; Hughes CA; Abendroth J; Dranow DM; Balboa S; Dean FB; Bullard JM
    Protein Sci; 2020 Apr; 29(4):905-918. PubMed ID: 31833153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutaminyl-tRNA synthetase: from genetics to molecular recognition.
    Ibba M; Hong KW; Söll D
    Genes Cells; 1996 May; 1(5):421-7. PubMed ID: 9078373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Adachi T; Inokuchi H; Söll D
    Biochimie; 1993; 75(12):1083-90. PubMed ID: 8199243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):291-5. PubMed ID: 7506418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How glutaminyl-tRNA synthetase selects glutamine.
    Rath VL; Silvian LF; Beijer B; Sproat BS; Steitz TA
    Structure; 1998 Apr; 6(4):439-49. PubMed ID: 9562563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.