These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23584258)

  • 1. High-resolution acoustic-radiation-force-impulse imaging for assessing corneal sclerosis.
    Shih CC; Huang CC; Zhou Q; Shung KK
    IEEE Trans Med Imaging; 2013 Jul; 32(7):1316-24. PubMed ID: 23584258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution Shear Wave Imaging of the Human Cornea Using a Dual-Element Transducer.
    Chen PY; Shih CC; Lin WC; Ma T; Zhou Q; Shung KK; Huang CC
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic Microelastography to Assess Biomechanical Properties of the Cornea.
    Qian X; Ma T; Shih CC; Heur M; Zhang J; Shung KK; Varma R; Humayun MS; Zhou Q
    IEEE Trans Biomed Eng; 2019 Mar; 66(3):647-655. PubMed ID: 29993484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging.
    Tanter M; Touboul D; Gennisson JL; Bercoff J; Fink M
    IEEE Trans Med Imaging; 2009 Dec; 28(12):1881-93. PubMed ID: 19423431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.
    Shih CC; Lai TY; Huang CC
    Ultrasonics; 2016 Aug; 70():64-74. PubMed ID: 27135187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive evaluation of corneal viscoelasticity based on displacement in response to acoustic radiation force.
    Zhen Lv ; Qing-Min Wang ; Fu-Long Liu ; Peng-Peng Zhang ; Xue-Hua Gao ; Yanrong Guo ; Xin-Yu Zhang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1417-1420. PubMed ID: 29060143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harmonic tracking of acoustic radiation force-induced displacements.
    Doherty JR; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2347-58. PubMed ID: 24158290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Frequency Ultrasound Elastography for Estimating the Viscoelastic Properties of the Cornea Using Lamb Wave Model.
    Weng CC; Chen PY; Chou D; Shih CC; Huang CC
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2637-2644. PubMed ID: 33306463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model.
    Shih CC; Qian X; Ma T; Han Z; Huang CC; Zhou Q; Shung KK
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1887-1898. PubMed ID: 29993652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing stiffness of human prostates using acoustic radiation force.
    Zhai L; Madden J; Foo WC; Mouraviev V; Polascik TJ; Palmeri ML; Nightingale KR
    Ultrason Imaging; 2010 Oct; 32(4):201-13. PubMed ID: 21213566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using an ultrasound elasticity microscope to map three-dimensional strain in a porcine cornea.
    Hollman KW; Shtein RM; Tripathy S; Kim K
    Ultrasound Med Biol; 2013 Aug; 39(8):1451-9. PubMed ID: 23683407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental studies of the thermal effects associated with radiation force imaging of soft tissue.
    Palmeri ML; Frinkley KD; Nightingale KR
    Ultrason Imaging; 2004 Apr; 26(2):100-14. PubMed ID: 15344414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.
    Ma T; Qian X; Chiu CT; Yu M; Jung H; Tung YS; Shung KK; Zhou Q
    Quant Imaging Med Surg; 2015 Feb; 5(1):108-17. PubMed ID: 25694960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of displacement underestimation in ARFI ultrasound.
    Czernuszewicz TJ; Streeter JE; Dayton PA; Gallippi CM
    Ultrason Imaging; 2013 Jul; 35(3):196-213. PubMed ID: 23858054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography.
    Han X; Zhang Y; Zhu Y; Zhao Y; Yang H; Liu G; Ai S; Wang Y; Xie C; Shi J; Zhang T; Huang G; He X
    Exp Biol Med (Maywood); 2022 Mar; 247(6):462-469. PubMed ID: 34861122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cylindrical Transducer for Intravascular ARFI Imaging: Design and Feasibility.
    Herickhoff CD; Telichko AV; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):760-769. PubMed ID: 31545716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance acoustic radiation force imaging.
    McDannold N; Maier SE
    Med Phys; 2008 Aug; 35(8):3748-58. PubMed ID: 18777934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive Measurement of Dynamic Myocardial Stiffness Using Acoustic Radiation Force Impulse Imaging.
    Kakkad V; LeFevre M; Hollender P; Kisslo J; Trahey GE
    Ultrasound Med Biol; 2019 May; 45(5):1112-1130. PubMed ID: 30890282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.