These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23584282)

  • 1. A microfluidic D-subminiature connector.
    Scott A; Au AK; Vinckenbosch E; Folch A
    Lab Chip; 2013 Jun; 13(11):2036-2039. PubMed ID: 23584282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensional analysis and scaling relevant to flow models of thrombus formation: communication from the SSC of the ISTH.
    McCarty OJ; Ku D; Sugimoto M; King MR; Cosemans JM; Neeves KB;
    J Thromb Haemost; 2016 Mar; 14(3):619-22. PubMed ID: 26933837
    [No Abstract]   [Full Text] [Related]  

  • 3. Frugal Droplet Microfluidics Using Consumer Opto-Electronics.
    Frot C; Taccoen N; Baroud CN
    PLoS One; 2016; 11(8):e0161490. PubMed ID: 27560139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic probe: a new tool for integrating microfluidic environments and electronic wafer-probing.
    Routenberg DA; Reed MA
    Lab Chip; 2010 Jan; 10(1):123-7. PubMed ID: 20024060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of Enzyme Kinetics on a Microfluidic Device.
    Rho HS; Hanke AT; Ottens M; Gardeniers H
    PLoS One; 2016; 11(4):e0153437. PubMed ID: 27082243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heteronanojunctions with atomic size control using a lab-on-chip electrochemical approach with integrated microfluidics.
    Lunca Popa P; Dalmas G; Faramarzi V; Dayen JF; Majjad H; Kemp NT; Doudin B
    Nanotechnology; 2011 May; 22(21):215302. PubMed ID: 21451221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems.
    Brooks JC; Judd RL; Easley CJ
    Methods Mol Biol; 2017; 1566():185-201. PubMed ID: 28244052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics.
    Pedde RD; Li H; Borchers CH; Akbari M
    Trends Biotechnol; 2017 Oct; 35(10):954-970. PubMed ID: 28755975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Glass Microfluidic Devices.
    Culbertson CT; Sibbitts J; Sellens K; Jia S
    Methods Mol Biol; 2019; 1906():1-12. PubMed ID: 30488382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for Multichannel Microfluidic Lab-on-CMOS Microsystems.
    Li L; Yin H; Mason AJ
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):416-425. PubMed ID: 29570067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfabricaton of microfluidic check valves using comb-shaped moving plug for suppression of backflow in microchannel.
    Hyeon J; So H
    Biomed Microdevices; 2019 Feb; 21(1):19. PubMed ID: 30790045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices.
    Park J; Han DH; Park JK
    Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and opportunities for translating medical microdevices: insights from the programmable bio-nano-chip.
    McRae MP; Simmons G; McDevitt JT
    Bioanalysis; 2016 May; 8(9):905-19. PubMed ID: 27071710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Trends in Microfluidics Based Devices.
    Solanki S; Pandey CM; Gupta RK; Malhotra BD
    Biotechnol J; 2020 May; 15(5):e1900279. PubMed ID: 32045505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.