These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 23584334)

  • 1. Using space-based investigations to inform cancer research on Earth.
    Becker JL; Souza GR
    Nat Rev Cancer; 2013 May; 13(5):315-27. PubMed ID: 23584334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity.
    Hatton JP; Lewis ML; Roquefeuil SB; Chaput D; Cazenave JP; Schmitt DA
    J Cell Biochem; 1998 Aug; 70(2):252-67. PubMed ID: 9671231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blunt trauma and operative care in microgravity: a review of microgravity physiology and surgical investigations with implications for critical care and operative treatment in space.
    Kirkpatrick AW; Campbell MR; Novinkov OL; Goncharov IB; Kovachevich IV
    J Am Coll Surg; 1997 May; 184(5):441-53. PubMed ID: 9145063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat.
    Yamazaki T; Yoshimoto M; Nishiyama Y; Okubo Y; Makimura K
    Microbiol Immunol; 2012 Jul; 56(7):441-6. PubMed ID: 22537211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for "minimal growth maintenance" of cell cultures: a perspective on management for extended duration experimentation in the microgravity environment of a Space station.
    Krikorian AD
    Bot Rev; 1996; 62(1):41-108. PubMed ID: 11540094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein crystal growth in microgravity.
    Bi RC; Gui LL; Shi K; Wang YP; Chen SZ; Han Q; Hu YL; Shen FL; Niu XT; Hua ZQ
    Sci China B; 1994 Oct; 37(10):1185-91. PubMed ID: 7865121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STUDIES OF SPACEFLIGHT EFFECTS ON A 3D MODEL OF CHONDROBLAST CULTURE.
    Volova LT; Rossinskaya VV; Milyakova MN; Boltovskaya VV; Nefedova IE; Kulagina LN; Pugachev EI
    Aviakosm Ekolog Med; 2016; 50(5):11-17. PubMed ID: 29553589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the influence of microgravity on chemotherapeutic drug response in cancer: Unveiling new perspectives.
    Vora PM; Prabhu S
    J Cell Mol Med; 2024 May; 28(9):e18347. PubMed ID: 38693857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station.
    Parra M; Jung J; Boone TD; Tran L; Blaber EA; Brown M; Chin M; Chinn T; Cohen J; Doebler R; Hoang D; Hyde E; Lera M; Luzod LT; Mallinson M; Marcu O; Mohamedaly Y; Ricco AJ; Rubins K; Sgarlato GD; Talavera RO; Tong P; Uribe E; Williams J; Wu D; Yousuf R; Richey CS; Schonfeld J; Almeida EAC
    PLoS One; 2017; 12(9):e0183480. PubMed ID: 28877184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The microgravity environment for experiments on the International Space Station.
    Nelson ES; Jules K
    J Gravit Physiol; 2004 Mar; 11(1):1-10. PubMed ID: 16145793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microgravity alters cancer growth and progression.
    Jhala DV; Kale RK; Singh RP
    Curr Cancer Drug Targets; 2014; 14(4):394-406. PubMed ID: 24720362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies of cell biology experimentation in space.
    Cogoli A
    J Gravit Physiol; 2004 Mar; 11(1):111-6. PubMed ID: 16145820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Weightlessness on the 3D Structure Formation and Physiologic Function of Human Cancer Cells.
    Chen ZY; Guo S; Li BB; Jiang N; Li A; Yan HF; Yang HM; Zhou JL; Li CL; Cui Y
    Biomed Res Int; 2019; 2019():4894083. PubMed ID: 31073526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and preparation of a particle dynamics space flight experiment, SHIVA.
    Trolinger JD; L'Esperance D; Rangel RH; Coimbra CF; Witherow WK
    Ann N Y Acad Sci; 2004 Nov; 1027():550-66. PubMed ID: 15644380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of feasibility of automated osteoblastic line culture in space flight.
    Guignandon A; Genty C; Vico L; Lafage-Proust MH; Palle S; Alexandre C
    Bone; 1997 Feb; 20(2):109-16. PubMed ID: 9028534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bound-solvent structures for microgravity-, ground control-, gel- and microbatch-grown hen egg-white lysozyme crystals at 1.8 A resolution.
    Dong J; Boggon TJ; Chayen NE; Raftery J; Bi RC; Helliwell JR
    Acta Crystallogr D Biol Crystallogr; 1999 Apr; 55(Pt 4):745-52. PubMed ID: 10089304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgravity research during aircraft parabolic flights: the 20 ESA campaigns.
    Pletser V
    ESA Bull; 1995 May; 82():9 p.. PubMed ID: 14971370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests.
    Hellweg CE; Dilruba S; Adrian A; Feles S; Schmitz C; Berger T; Przybyla B; Briganti L; Franz M; Segerer J; Spitta LF; Henschenmacher B; Konda B; Diegeler S; Baumstark-Khan C; Panitz C; Reitz G
    Life Sci Space Res (Amst); 2015 Nov; 7():73-89. PubMed ID: 26553641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomedical challenges of space flight.
    Williams DR
    Annu Rev Med; 2003; 54():245-56. PubMed ID: 12471177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.