These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 23584514)

  • 1. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage.
    Li GR; Xu H; Lu XF; Feng JX; Tong YX; Su CY
    Nanoscale; 2013 May; 5(10):4056-69. PubMed ID: 23584514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanomaterials for advanced energy conversion and storage.
    Dai L; Chang DW; Baek JB; Lu W
    Small; 2012 Apr; 8(8):1130-66. PubMed ID: 22383334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery.
    Guo S; Wang E
    Acc Chem Res; 2011 Jul; 44(7):491-500. PubMed ID: 21612197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Status of biomolecular recognition using electrochemical techniques.
    Sadik OA; Aluoch AO; Zhou A
    Biosens Bioelectron; 2009 May; 24(9):2749-65. PubMed ID: 19054662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.
    Yang S; Bachman RE; Feng X; Müllen K
    Acc Chem Res; 2013 Jan; 46(1):116-28. PubMed ID: 23110511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled synthesis of heterogeneous metal-titania nanostructures and their applications.
    Liu R; Sen A
    J Am Chem Soc; 2012 Oct; 134(42):17505-12. PubMed ID: 22524321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications.
    Xu Y; Zhang B
    Chem Soc Rev; 2014 Apr; 43(8):2439-50. PubMed ID: 24458336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic nanostructured materials for high performance electrochemical supercapacitors.
    Liu S; Sun S; You XZ
    Nanoscale; 2014 Feb; 6(4):2037-45. PubMed ID: 24384725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering low-aspect ratio carbon nanostructures: nanocups, nanorings, and nanocontainers.
    Chun H; Hahm MG; Homma Y; Meritz R; Kuramochi K; Menon L; Ci L; Ajayan PM; Jung YJ
    ACS Nano; 2009 May; 3(5):1274-8. PubMed ID: 19408923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured Mn-based oxides for electrochemical energy storage and conversion.
    Zhang K; Han X; Hu Z; Zhang X; Tao Z; Chen J
    Chem Soc Rev; 2015 Feb; 44(3):699-728. PubMed ID: 25200459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of nanostructured titanate materials by the hydrothermal treatment method.
    Doong RA; Kao IL
    Recent Pat Nanotechnol; 2008; 2(2):84-102. PubMed ID: 19076044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterials for facilitating microbial extracellular electron transfer: Recent progress and challenges.
    Zhang P; Liu J; Qu Y; Li D; He W; Feng Y
    Bioelectrochemistry; 2018 Oct; 123():190-200. PubMed ID: 29800809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
    Zhao X; Sánchez BM; Dobson PJ; Grant PS
    Nanoscale; 2011 Mar; 3(3):839-55. PubMed ID: 21253650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage.
    Mai Y; Zhang F; Feng X
    Nanoscale; 2014 Jan; 6(1):106-21. PubMed ID: 24284837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential controlled electrochemical conversion of AgCN and Cu(OH)2 nanofibers into metal nanoparticles, nanoprisms, nanofibers, and porous networks.
    Bourret GR; Lennox RB
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3745-58. PubMed ID: 21121642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems.
    Zhang J; Li CM
    Chem Soc Rev; 2012 Nov; 41(21):7016-31. PubMed ID: 22975622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured conductive polymers for advanced energy storage.
    Shi Y; Peng L; Ding Y; Zhao Y; Yu G
    Chem Soc Rev; 2015 Oct; 44(19):6684-96. PubMed ID: 26119242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications.
    Wildgoose GG; Banks CE; Compton RG
    Small; 2006 Feb; 2(2):182-93. PubMed ID: 17193018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.