These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 2358475)
1. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro. Bethlenfalvay NC; White JC; Chadwick E; Lima JE J Cell Physiol; 1990 Jun; 143(3):563-8. PubMed ID: 2358475 [TBL] [Abstract][Full Text] [Related]
2. Purine metabolism in Neisseria meningitidis. 3. Utilization of exogenous hypoxanthine, guanine and xanthine. Jyssum S Acta Pathol Microbiol Scand B; 1975 Oct; 83(5):397-406. PubMed ID: 809993 [TBL] [Abstract][Full Text] [Related]
3. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes--VI. De novo purine nucleotide biosynthesis is limited to the final steps of the pathway in vitro. Bethlenfalvay NC; White JC; Chadwick E; Lima JE Comp Biochem Physiol B; 1990; 97(1):193-6. PubMed ID: 2253476 [TBL] [Abstract][Full Text] [Related]
4. Studies on the energy metabolism of opossum (Didelphis Virginiana) erythrocytes. I. Utilization of carbohydrates and purine nucleosides. Bethlenfalvay NC; Lima JE; Waldrup T J Cell Physiol; 1984 Jul; 120(1):69-74. PubMed ID: 6429161 [TBL] [Abstract][Full Text] [Related]
5. Studies on the energy metabolism of opossum Didelphis virginiana erythrocytes--IV. Red cells have low adenosine deaminase activity and high levels of deoxyadenosine nucleotides. Bethlenfalvay NC; Chadwick E; Lima JE Life Sci; 1989; 44(14):963-70. PubMed ID: 2784528 [TBL] [Abstract][Full Text] [Related]
6. Studies on the energy metabolism of opossum Didelphis virginiana erythrocytes--III. Metabolic depletion with 2-deoxyglucose markedly accelerates methemoglobin reduction in opossum but not in human erythrocytes. Bethlenfalvay NC; Lima JE; Chadwick E; Stewart I Comp Biochem Physiol A Comp Physiol; 1988; 89(2):119-24. PubMed ID: 2896090 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of utilization of hypoxanthine and guanine in cells treated with the carbocyclic analog of adenosine. Phosphates of carbocyclic nucleoside analogs as inhibitors of hypoxanthine (guanine) phosphoribosyltransferase. Bennett LL; Brockman RW; Rose LM; Allan PW; Shaddix SC; Shealy YF; Clayton JD Mol Pharmacol; 1985 Jun; 27(6):666-75. PubMed ID: 2987661 [TBL] [Abstract][Full Text] [Related]
8. Effect of dipyridamole on adenine incorporation into hypoxanthine nucleotides of fresh red blood cells. Kopff M; Zakrzewska I; Klem J; Zachara B Biomed Biochim Acta; 1986; 45(7):945-8. PubMed ID: 3790106 [TBL] [Abstract][Full Text] [Related]
9. Variations of adenine nucleotide levels in normal and pathologic human erythrocytes exposed to oxidative stress. Bozzi A; Martini F; Leonardi F; Strom R Biochem Mol Biol Int; 1994 Jan; 32(1):95-103. PubMed ID: 8012294 [TBL] [Abstract][Full Text] [Related]
10. Preservation of red blood cells with purines and nucleosides. III. Synthesis of adenine, guanine, and hypoxanthine nucleotides. Strauss D; de Verdier CD Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):434-53. PubMed ID: 6159281 [TBL] [Abstract][Full Text] [Related]
11. Adenine and guanine nucleotide metabolism during platelet storage at 22 degrees C. Edenbrandt CM; Murphy S Blood; 1990 Nov; 76(9):1884-92. PubMed ID: 2224137 [TBL] [Abstract][Full Text] [Related]
12. Inhibitors of hypoxanthine metabolism in Ehrlich ascites tumor cells in vitro. Smith CM; Zombor G; Henderson JF Cancer Treat Rep; 1976 Oct; 60(10):1567-84. PubMed ID: 191189 [TBL] [Abstract][Full Text] [Related]
13. Measurement of both cyclic [3H]AMP and cyclic [3H]GMP in cultured vascular smooth muscle cells labeled with [3H]hypoxanthine: use in studies of cardiovascular drugs. Maurice DH; Lee RM; Haslam RJ Anal Biochem; 1993 Nov; 215(1):110-7. PubMed ID: 8297002 [TBL] [Abstract][Full Text] [Related]
14. Effects of guanine ribonucleotide accumulation on the metabolism and cell cycle of human lymphoid cells. Sidi Y; Hudson JL; Mitchell BS Cancer Res; 1985 Oct; 45(10):4940-5. PubMed ID: 2411392 [TBL] [Abstract][Full Text] [Related]
15. Pathways of purine nucleotide synthesis in the human trophoblast early and late in gestation. Vettenranta K J Dev Physiol; 1988 Dec; 10(6):547-54. PubMed ID: 3246546 [TBL] [Abstract][Full Text] [Related]
16. Purine salvage in Entamoeba histolytica. Lo HS; Wang CC J Parasitol; 1985 Oct; 71(5):662-9. PubMed ID: 2865346 [TBL] [Abstract][Full Text] [Related]
17. [Features of purine compound metabolism in hepatoma 22, mouse liver and erythrocytes during tumor development]. Tikhonov IuV; Meĭsner IS; Pimenov AM; Toguzov RT Vopr Med Khim; 1989; 35(3):125-9. PubMed ID: 2773376 [TBL] [Abstract][Full Text] [Related]
18. Turnover of purine nucleotides in human red blood cells. Mager J; Dvilansky A; Razin A; Wind E; Izak G Isr J Med Sci; 1966; 2(3):297-301. PubMed ID: 5956224 [No Abstract] [Full Text] [Related]
19. Studies on the energy metabolism of opossum Didelphis virginiana erythrocytes--II. Comparative aspects of 2-deoxy-D-glucose catabolism in opossum and human red cells in vitro. Bethlenfalvay NC; Lima JE; Waldrup TL; Chadwick E; Stewart I Comp Biochem Physiol A Comp Physiol; 1988; 89(2):113-7. PubMed ID: 2896089 [TBL] [Abstract][Full Text] [Related]
20. Differences in the metabolism and metabolic effects of the carbocyclic adenosine analogs, neplanocin A and aristeromycin. Bennett LL; Allan PW; Rose LM; Comber RN; Secrist JA Mol Pharmacol; 1986 Apr; 29(4):383-90. PubMed ID: 3702857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]