These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 23584970)
1. The versatile in situ gene expression of an Epsilonproteobacteria-dominated biofilm from a hydrothermal chimney. Dahle H; Roalkvam I; Thorseth IH; Pedersen RB; Steen IH Environ Microbiol Rep; 2013 Apr; 5(2):282-90. PubMed ID: 23584970 [TBL] [Abstract][Full Text] [Related]
2. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Stokke R; Dahle H; Roalkvam I; Wissuwa J; Daae FL; Tooming-Klunderud A; Thorseth IH; Pedersen RB; Steen IH Environ Microbiol; 2015 Oct; 17(10):4063-77. PubMed ID: 26147346 [TBL] [Abstract][Full Text] [Related]
3. Microbial diversity of Loki's Castle black smokers at the Arctic Mid-Ocean Ridge. Jaeschke A; Jørgensen SL; Bernasconi SM; Pedersen RB; Thorseth IH; Früh-Green GL Geobiology; 2012 Nov; 10(6):548-61. PubMed ID: 23006788 [TBL] [Abstract][Full Text] [Related]
4. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. Brazelton WJ; Baross JA ISME J; 2009 Dec; 3(12):1420-4. PubMed ID: 19571895 [TBL] [Abstract][Full Text] [Related]
5. Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. Hügler M; Gärtner A; Imhoff JF FEMS Microbiol Ecol; 2010 Sep; 73(3):526-37. PubMed ID: 20597983 [TBL] [Abstract][Full Text] [Related]
6. Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Nakagawa T; Takai K; Suzuki Y; Hirayama H; Konno U; Tsunogai U; Horikoshi K Environ Microbiol; 2006 Jan; 8(1):37-49. PubMed ID: 16343320 [TBL] [Abstract][Full Text] [Related]
7. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Nakagawa S; Takai K; Inagaki F; Hirayama H; Nunoura T; Horikoshi K; Sako Y Environ Microbiol; 2005 Oct; 7(10):1619-32. PubMed ID: 16156735 [TBL] [Abstract][Full Text] [Related]
8. Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge. Voordeckers JW; Do MH; Hügler M; Ko V; Sievert SM; Vetriani C Extremophiles; 2008 Sep; 12(5):627-40. PubMed ID: 18523725 [TBL] [Abstract][Full Text] [Related]
9. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. Macalady JL; Dattagupta S; Schaperdoth I; Jones DS; Druschel GK; Eastman D ISME J; 2008 Jun; 2(6):590-601. PubMed ID: 18356823 [TBL] [Abstract][Full Text] [Related]
10. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. Meier DV; Pjevac P; Bach W; Hourdez S; Girguis PR; Vidoudez C; Amann R; Meyerdierks A ISME J; 2017 Jul; 11(7):1545-1558. PubMed ID: 28375213 [TBL] [Abstract][Full Text] [Related]
11. Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Alain K; Callac N; Guégan M; Lesongeur F; Crassous P; Cambon-Bonavita MA; Querellou J; Prieur D Int J Syst Evol Microbiol; 2009 Jun; 59(Pt 6):1310-5. PubMed ID: 19502307 [TBL] [Abstract][Full Text] [Related]
13. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts. Huber JA; Cantin HV; Huse SM; Welch DB; Sogin ML; Butterfield DA FEMS Microbiol Ecol; 2010 Sep; 73(3):538-49. PubMed ID: 20533947 [TBL] [Abstract][Full Text] [Related]
14. Novel Barite Chimneys at the Loki's Castle Vent Field Shed Light on Key Factors Shaping Microbial Communities and Functions in Hydrothermal Systems. Steen IH; Dahle H; Stokke R; Roalkvam I; Daae FL; Rapp HT; Pedersen RB; Thorseth IH Front Microbiol; 2015; 6():1510. PubMed ID: 26779165 [TBL] [Abstract][Full Text] [Related]
15. Microbial CO(2) fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9 degrees S). Perner M; Seifert R; Weber S; Koschinsky A; Schmidt K; Strauss H; Peters M; Haase K; Imhoff JF Environ Microbiol; 2007 May; 9(5):1186-201. PubMed ID: 17472634 [TBL] [Abstract][Full Text] [Related]
16. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. Olins HC; Rogers DR; Frank KL; Vidoudez C; Girguis PR Geobiology; 2013 May; 11(3):279-93. PubMed ID: 23551687 [TBL] [Abstract][Full Text] [Related]
17. Draft genome sequence of the sulfur-oxidizing bacterium "Candidatus Sulfurovum sediminum" AR, which belongs to the Epsilonproteobacteria. Park SJ; Ghai R; Martín-Cuadrado AB; Rodríguez-Valera F; Jung MY; Kim JG; Rhee SK J Bacteriol; 2012 Aug; 194(15):4128-9. PubMed ID: 22815446 [TBL] [Abstract][Full Text] [Related]
18. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Campbell BJ; Cary SC Appl Environ Microbiol; 2004 Oct; 70(10):6282-9. PubMed ID: 15466576 [TBL] [Abstract][Full Text] [Related]
19. Identification of a Thiomicrospira denitrificans-like epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic Sea. Brettar I; Labrenz M; Flavier S; Bötel J; Kuosa H; Christen R; Höfle MG Appl Environ Microbiol; 2006 Feb; 72(2):1364-72. PubMed ID: 16461688 [TBL] [Abstract][Full Text] [Related]
20. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria. Pérez-Rodríguez I; Bolognini M; Ricci J; Bini E; Vetriani C ISME J; 2015 May; 9(5):1222-34. PubMed ID: 25397946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]