These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23585076)
41. Duodenal-jejunal bypass and jejunectomy improve insulin sensitivity in Goto-Kakizaki diabetic rats without changes in incretins or insulin secretion. Salinari S; le Roux CW; Bertuzzi A; Rubino F; Mingrone G Diabetes; 2014 Mar; 63(3):1069-78. PubMed ID: 24241532 [TBL] [Abstract][Full Text] [Related]
42. [Effect of blood glucose control after small intestine exclusion surgery in Goto-Kakizaki rat with type 2 diabetes mellitus]. Wang Y; Zhang ZZ; Wang L; Deng ZZ; Jiao YB; Zou ZD Zhonghua Yi Xue Za Zhi; 2009 Nov; 89(40):2858-61. PubMed ID: 20137669 [TBL] [Abstract][Full Text] [Related]
43. Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Speck M; Cho YM; Asadi A; Rubino F; Kieffer TJ Am J Physiol Endocrinol Metab; 2011 May; 300(5):E923-32. PubMed ID: 21304061 [TBL] [Abstract][Full Text] [Related]
44. Ileal Interposition in Rats with Experimental Type 2 Like Diabetes Improves Glycemic Control Independently of Glucose Absorption. Jurowich CF; Otto C; Rikkala PR; Wagner N; Vrhovac I; Sabolić I; Germer CT; Koepsell H J Diabetes Res; 2015; 2015():490365. PubMed ID: 26185767 [TBL] [Abstract][Full Text] [Related]
45. Long-term effects of duodenojejunal bypass on diabetes in Otsuka Long-Evans Tokushima Fatty rats. Lee SK; Kwon OJ; Jeon HM; Kim SJ Asian J Surg; 2017 Jul; 40(4):262-269. PubMed ID: 26787497 [TBL] [Abstract][Full Text] [Related]
46. Alterations in gut microbiota during remission and recurrence of diabetes after duodenal-jejunal bypass in rats. Zhong MW; Liu SZ; Zhang GY; Zhang X; Liu T; Hu SY World J Gastroenterol; 2016 Aug; 22(29):6706-15. PubMed ID: 27547013 [TBL] [Abstract][Full Text] [Related]
47. Residual Gastric Dilatation Interferes with Metabolic Improvements Following Sleeve Gastrectomy by Upregulating the Expression of Sodium-Glucose Cotransporter-1. Xia J; He Q; He M; Xu G; Tang Y; Ren Y Obes Surg; 2019 Oct; 29(10):3324-3333. PubMed ID: 31201691 [TBL] [Abstract][Full Text] [Related]
48. Duodenal-jejunal bypass surgery does not increase skeletal muscle insulin signal transduction or glucose disposal in Goto-Kakizaki type 2 diabetic rats. Gavin TP; Sloan RC; Lukosius EZ; Reed MA; Pender JR; Boghossian V; Carter JJ; McKernie RD; Parikh K; Price JW; Tapscott EB; Pories WJ; Dohm GL Obes Surg; 2011 Feb; 21(2):231-7. PubMed ID: 21086062 [TBL] [Abstract][Full Text] [Related]
49. Duodenal-jejunal bypass reduces serum ceramides Cheng ZQ; Liu TM; Ren PF; Chen C; Wang YL; Dai Y; Zhang X World J Gastroenterol; 2022 Aug; 28(31):4328-4337. PubMed ID: 36159007 [TBL] [Abstract][Full Text] [Related]
50. Sleeve Gastrectomy Surgery Improves Glucose Metabolism by Downregulating the Intestinal Expression of Sodium-Glucose Cotransporter-3. Ren Y; Zhao Z; Zhao G; Liu Q; Wang Z; Liu R J Invest Surg; 2022 Jan; 35(1):14-22. PubMed ID: 32835540 [TBL] [Abstract][Full Text] [Related]
51. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Breen DM; Rasmussen BA; Kokorovic A; Wang R; Cheung GW; Lam TK Nat Med; 2012 Jun; 18(6):950-5. PubMed ID: 22610279 [TBL] [Abstract][Full Text] [Related]
52. Preliminary Results of the Influence of Duodenojejunal Bypass in a Porcine Model of Streptozotocin-Induced Diabetes Mellitus. Hiridis S; Konstantinidis K; Menenakos E; Diamantis T; Papalois A; Zografos G Obes Surg; 2016 Apr; 26(4):882-90. PubMed ID: 26843083 [TBL] [Abstract][Full Text] [Related]
53. Gastric Bypass Surgery Reverses Diabetic Phenotypes in Bdnf-Deficient Mice. Jiang S; Wang Q; Huang Z; Song A; Peng Y; Hou S; Guo S; Zhu W; Yan S; Lin Z; Gao X Am J Pathol; 2016 Aug; 186(8):2117-2128. PubMed ID: 27418549 [TBL] [Abstract][Full Text] [Related]
54. Intestinal absorption of glucose in mice as determined by positron emission tomography. Sala-Rabanal M; Ghezzi C; Hirayama BA; Kepe V; Liu J; Barrio JR; Wright EM J Physiol; 2018 Jul; 596(13):2473-2489. PubMed ID: 29707805 [TBL] [Abstract][Full Text] [Related]
55. Changes in Enterohepatic Circulation after Duodenal-Jejunal Bypass and Reabsorption of Bile Acids in the Bilio-Pancreatic Limb. Ise I; Tanaka N; Imoto H; Maekawa M; Kohyama A; Watanabe K; Motoi F; Unno M; Naitoh T Obes Surg; 2019 Jun; 29(6):1901-1910. PubMed ID: 30805859 [TBL] [Abstract][Full Text] [Related]
56. Duodenal-jejunal bypass surgery suppresses hepatic de novo lipogenesis and alleviates liver fat accumulation in a diabetic rat model. Han H; Hu C; Wang L; Zhang G; Liu S; Li F; Sun D; Hu S Obes Surg; 2014 Dec; 24(12):2152-60. PubMed ID: 24898720 [TBL] [Abstract][Full Text] [Related]
57. Impact of Roux-en-Y gastric bypass surgery on rat intestinal glucose transport. Stearns AT; Balakrishnan A; Tavakkolizadeh A Am J Physiol Gastrointest Liver Physiol; 2009 Nov; 297(5):G950-7. PubMed ID: 20501442 [TBL] [Abstract][Full Text] [Related]
58. Preserving Duodenal-Jejunal (Foregut) Transit Does Not Impair Glucose Tolerance and Diabetes Remission Following Gastric Bypass in Type 2 Diabetes Sprague-Dawley Rat Model. Dolo PR; Yao L; Li C; Zhu X; Shi L; Widjaja J Obes Surg; 2018 May; 28(5):1313-1320. PubMed ID: 29098544 [TBL] [Abstract][Full Text] [Related]
59. Bile deficiency induces changes in intestinal glucose absorption in mice. Du Y; Chen H; Xuan Z; Song W; Hong L; Guo D; Li H; Tuo B; Zheng S; Song P Surgery; 2016 Dec; 160(6):1496-1507. PubMed ID: 27495848 [TBL] [Abstract][Full Text] [Related]
60. The Effect and Mechanism of Duodenal-Jejunal Bypass to Treat Type 2 Diabetes Mellitus in a Rat Model. Chen X; Zhang Q; Yang Q; Huang Z; Liao G; Wang Z Obes Facts; 2022; 15(3):344-356. PubMed ID: 35299171 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]