These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
578 related articles for article (PubMed ID: 23585164)
1. Designing, construction, assessment, and efficiency of local exhaust ventilation in controlling crystalline silica dust and particles, and formaldehyde in a foundry industry plant. Morteza MM; Hossein K; Amirhossein M; Naser H; Gholamhossein H; Hossein F Arh Hig Rada Toksikol; 2013; 64(1):123-31. PubMed ID: 23585164 [TBL] [Abstract][Full Text] [Related]
2. An evaluation of an aftermarket local exhaust ventilation device for suppressing respirable dust and respirable crystalline silica dust from powered saws. Garcia A; Jones E; Echt AS; Hall RM J Occup Environ Hyg; 2014; 11(11):D200-7. PubMed ID: 25148513 [TBL] [Abstract][Full Text] [Related]
3. Reducing silica and dust exposures in construction during use of powered concrete-cutting hand tools: efficacy of local exhaust ventilation on hammer drills. Shepherd S; Woskie SR; Holcroft C; Ellenbecker M J Occup Environ Hyg; 2009 Jan; 6(1):42-51. PubMed ID: 19005968 [TBL] [Abstract][Full Text] [Related]
4. Respiratory Effects of Simultaneous Exposure to Respirable Crystalline Silica Dust, Formaldehyde, and Triethylamine of a Group of Foundry Workers. Zarei F; Rezazadeh Azari M; Salehpour S; Khodakarim S; Omidi L; Tavakol E J Res Health Sci; 2017 Mar; 17(1):e00371. PubMed ID: 28413169 [TBL] [Abstract][Full Text] [Related]
5. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal. Collingwood S; Heitbrink WA J Occup Environ Hyg; 2007 Nov; 4(11):875-87. PubMed ID: 17917951 [TBL] [Abstract][Full Text] [Related]
6. A report on silica exposure levels in United States foundries. Oudiz J; Brown JW; Ayer HE; Samuels S Am Ind Hyg Assoc J; 1983 May; 44(5):374-6. PubMed ID: 6307033 [TBL] [Abstract][Full Text] [Related]
7. Silica exposure in hand grinding steel castings. O'Brien D; Froehlich PA; Gressel MG; Hall RM; Clark NJ; Bost P; Fischbach T Am Ind Hyg Assoc J; 1992 Jan; 53(1):42-8. PubMed ID: 1317091 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of on-tool shrouds for controlling respirable crystalline silica in restoration stone work. Healy CB; Coggins MA; Van Tongeren M; MacCalman L; McGowan P Ann Occup Hyg; 2014 Nov; 58(9):1155-67. PubMed ID: 25261456 [TBL] [Abstract][Full Text] [Related]
9. Crystalline silica dust and respirable particulate matter during indoor concrete grinding - wet grinding and ventilated grinding compared with uncontrolled conventional grinding. Akbar-Khanzadeh F; Milz S; Ames A; Susi PP; Bisesi M; Khuder SA; Akbar-Khanzadeh M J Occup Environ Hyg; 2007 Oct; 4(10):770-9. PubMed ID: 17763068 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement. Echt A; Mead K Ann Occup Hyg; 2016 May; 60(4):519-24. PubMed ID: 26826033 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of dust control methods for crystalline silica and respirable suspended particulate matter exposure during manual concrete surface grinding. Akbar-Khanzadeh F; Milz SA; Wagner CD; Bisesi MS; Ames AL; Khuder S; Susi P; Akbar-Khanzadeh M J Occup Environ Hyg; 2010 Dec; 7(12):700-11. PubMed ID: 21058155 [TBL] [Abstract][Full Text] [Related]
12. [Dynamic monitoring and analysis of occupational hazards in working environment of foundry plant from 1987 to 2010]. Lu Y; Zhang M; Chen WH; Qi C Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2013 Aug; 31(8):568-75. PubMed ID: 24053954 [TBL] [Abstract][Full Text] [Related]
13. Laboratory evaluation to reduce respirable crystalline silica dust when cutting concrete roofing tiles using a masonry saw. Carlo RV; Sheehy J; Feng HA; Sieber WK J Occup Environ Hyg; 2010 Apr; 7(4):245-51. PubMed ID: 20169490 [TBL] [Abstract][Full Text] [Related]
14. [Exposure to silica dust in the Polish construction industry]. Szadkowska-Stańczyk I; Stroszejn-Mrowca G; Mikołajczyk U; Maciejewska A Med Pr; 2006; 57(5):405-13. PubMed ID: 17340982 [TBL] [Abstract][Full Text] [Related]
15. Elemental properties of copper slag and measured airborne exposures at a copper slag processing facility. Mugford C; Gibbs JL; Boylstein R J Occup Environ Hyg; 2017 Aug; 14(8):D120-D129. PubMed ID: 28506182 [TBL] [Abstract][Full Text] [Related]
16. A numerical and experimental investigation of crystalline silica exposure control during tuck pointing. Heitbrink W; Bennett J J Occup Environ Hyg; 2006 Jul; 3(7):366-78. PubMed ID: 16835163 [TBL] [Abstract][Full Text] [Related]
17. Determination and Prediction of Respirable Dust and Crystalline-Free Silica in the Taiwanese Foundry Industry. Kuo CT; Chiu FF; Bao BY; Chang TY Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30257469 [No Abstract] [Full Text] [Related]
18. Respirable crystalline silica exposures during asphalt pavement milling at eleven highway construction sites. Hammond DR; Shulman SA; Echt AS J Occup Environ Hyg; 2016 Jul; 13(7):538-48. PubMed ID: 26913983 [TBL] [Abstract][Full Text] [Related]
19. Efficiency of a tool-mounted local exhaust ventilation system for controlling dust exposure during metal grinding operations. Ojima J Ind Health; 2007 Dec; 45(6):817-9. PubMed ID: 18212477 [TBL] [Abstract][Full Text] [Related]
20. Effect of hollow bit local exhaust ventilation on respirable quartz dust concentrations during concrete drilling. Rempel D; Barr A; Cooper MR J Occup Environ Hyg; 2019 May; 16(5):336-340. PubMed ID: 31013200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]