BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 2358518)

  • 1. Cutaneous dermatomes for initiation of three forms of the scratch reflex in the spinal turtle.
    Mortin LI; Stein PS
    J Comp Neurol; 1990 May; 295(4):515-29. PubMed ID: 2358518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord segments containing key elements of the central pattern generators for three forms of scratch reflex in the turtle.
    Mortin LI; Stein PS
    J Neurosci; 1989 Jul; 9(7):2285-96. PubMed ID: 2746329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN; Lee S
    J Neurophysiol; 1996 Jul; 76(1):81-92. PubMed ID: 8836211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three forms of the scratch reflex in the spinal turtle: movement analyses.
    Mortin LI; Keifer J; Stein PS
    J Neurophysiol; 1985 Jun; 53(6):1501-16. PubMed ID: 4009230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal interactions in the turtle hindlimb enlargement contribute to scratch rhythmogenesis.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1999 Jun; 81(6):2977-87. PubMed ID: 10368414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cutaneous stimulation evokes long-lasting excitation of spinal interneurons in the turtle.
    Currie SN; Stein PS
    J Neurophysiol; 1990 Oct; 64(4):1134-48. PubMed ID: 2258738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns.
    Robertson GA; Mortin LI; Keifer J; Stein PS
    J Neurophysiol; 1985 Jun; 53(6):1517-34. PubMed ID: 4009231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical activation of the pocket scratch central pattern generator in the turtle.
    Currie SN; Stein PS
    J Neurophysiol; 1988 Dec; 60(6):2122-37. PubMed ID: 3236064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of flexor/extensor alternation during fictive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection.
    Stein PS; McCullough ML; Currie SN
    J Neurosci; 1998 Jan; 18(1):467-79. PubMed ID: 9412523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate antagonists applied to midbody spinal cord segments reduce the excitability of the fictive rostral scratch reflex in the turtle.
    Currie SN; Stein PS
    Brain Res; 1992 May; 581(1):91-100. PubMed ID: 1354009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Right-left interactions between rostral scratch networks generate rhythmicity in the preenlargement spinal cord of the turtle.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1997 Dec; 78(6):3479-83. PubMed ID: 9405565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dermatomes and the central organization of dermatomes and body surface regions in the spinal cord dorsal horn in rats.
    Takahashi Y; Chiba T; Kurokawa M; Aoki Y
    J Comp Neurol; 2003 Jul; 462(1):29-41. PubMed ID: 12761822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propriospinal projections to the ventral horn of the rostral and caudal hindlimb enlargement in turtles.
    Berkowitz A
    Brain Res; 2004 Jul; 1014(1-2):164-76. PubMed ID: 15213001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations.
    Currie SN
    J Physiol Paris; 1999; 93(3):199-211. PubMed ID: 10399675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord.
    Swett JE; Woolf CJ
    J Comp Neurol; 1985 Jan; 231(1):66-77. PubMed ID: 3968229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blends of rostral and caudal scratch reflex motor patterns elicited by simultaneous stimulation of two sites in the spinal turtle.
    Stein PS; Camp AW; Robertson GA; Mortin LI
    J Neurosci; 1986 Aug; 6(8):2259-66. PubMed ID: 3746408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scratch-swim hybrids in the spinal turtle: blending of rostral scratch and forward swim.
    Earhart GM; Stein PS
    J Neurophysiol; 2000 Jan; 83(1):156-65. PubMed ID: 10634862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossed commissural pathways in the spinal hindlimb enlargement are not necessary for right left hindlimb alternation during turtle swimming.
    Samara RF; Currie SN
    J Neurophysiol; 2007 Oct; 98(4):2223-31. PubMed ID: 17715193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface.
    Berkowitz A; Stein PS
    J Neurosci; 1994 Aug; 14(8):5089-104. PubMed ID: 8046470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.