These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23585296)

  • 1. Synergetic material and structure optimization yields robust spider web anchorages.
    Pugno NM; Cranford SW; Buehler MJ
    Small; 2013 Aug; 9(16):2747-56. PubMed ID: 23585296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compliant threads maximize spider silk connection strength and toughness.
    Meyer A; Pugno NM; Cranford SW
    J R Soc Interface; 2014 Sep; 11(98):20140561. PubMed ID: 25008083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical variation of silk links spinning plasticity to spider web function.
    Boutry C; Blackledge TA
    Zoology (Jena); 2009; 112(6):451-60. PubMed ID: 19720511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spider capture silk: performance implications of variation in an exceptional biomaterial.
    Swanson BO; Blackledge TA; Hayashi CY
    J Exp Zool A Ecol Genet Physiol; 2007 Nov; 307(11):654-66. PubMed ID: 17853401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical performance of spider orb webs is tuned for high-speed prey.
    Sensenig AT; Kelly SP; Lorentz KA; Lesher B; Blackledge TA
    J Exp Biol; 2013 Sep; 216(Pt 18):3388-94. PubMed ID: 23966586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioural and biomaterial coevolution in spider orb webs.
    Sensenig A; Agnarsson I; Blackledge TA
    J Evol Biol; 2010 Sep; 23(9):1839-56. PubMed ID: 20629854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastic material investment in load-bearing silk attachments in spiders.
    Wolff JO; Jones B; Herberstein ME
    Zoology (Jena); 2018 Dec; 131():45-47. PubMed ID: 29807866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of mechanical properties and structural design of spider web.
    Ko FK; Jovicic J
    Biomacromolecules; 2004; 5(3):780-5. PubMed ID: 15132661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages.
    Wolff JO; Paterno GB; Liprandi D; Ramírez MJ; Bosia F; van der Meijden A; Michalik P; Smith HM; Jones BR; Ravelo AM; Pugno N; Herberstein ME
    Evolution; 2019 Oct; 73(10):2122-2134. PubMed ID: 31441504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations.
    Wolff JO; Herberstein ME
    J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28228539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance spider webs: integrating biomechanics, ecology and behaviour.
    Harmer AM; Blackledge TA; Madin JS; Herberstein ME
    J R Soc Interface; 2011 Apr; 8(57):457-71. PubMed ID: 21036911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.
    Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):542-52. PubMed ID: 18651614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and analysis of a three-dimensional spider web architecture.
    Su I; Qin Z; Saraceno T; Krell A; Mühlethaler R; Bisshop A; Buehler MJ
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30232240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear material behaviour of spider silk yields robust webs.
    Cranford SW; Tarakanova A; Pugno NM; Buehler MJ
    Nature; 2012 Feb; 482(7383):72-6. PubMed ID: 22297972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.
    Boutry C; Blackledge TA
    J Exp Biol; 2010 Oct; 213(Pt 20):3505-14. PubMed ID: 20889831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of capture spiral silk properties in the diversification of orb webs.
    Tarakanova A; Buehler MJ
    J R Soc Interface; 2012 Dec; 9(77):3240-8. PubMed ID: 22896566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk.
    Guinea GV; Elices M; Pérez-Rigueiro J; Plaza GR
    J Exp Biol; 2005 Jan; 208(Pt 1):25-30. PubMed ID: 15601874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spider dragline silk: correlated and mosaic evolution in high-performance biological materials.
    Swanson BO; Blackledge TA; Summers AP; Hayashi CY
    Evolution; 2006 Dec; 60(12):2539-51. PubMed ID: 17263115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk elasticity as a potential constraint on spider body size.
    Rodríguez-Gironés MA; Corcobado G; Moya-Laraño J
    J Theor Biol; 2010 Oct; 266(3):430-5. PubMed ID: 20600136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The scaling of safety factor in spider draglines.
    Ortlepp C; Gosline JM
    J Exp Biol; 2008 Sep; 211(Pt 17):2832-40. PubMed ID: 18723542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.