These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 2358543)
1. Ocular dominance plasticity and developmental changes of 5'-nucleotidase distributions in the kitten visual cortex. Schoen SW; Leutenecker B; Kreutzberg GW; Singer W J Comp Neurol; 1990 Jun; 296(3):379-92. PubMed ID: 2358543 [TBL] [Abstract][Full Text] [Related]
2. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. Mower GD; Caplan CJ; Christen WG; Duffy FH J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219 [TBL] [Abstract][Full Text] [Related]
3. Cytochemical redistribution of 5'-nucleotidase in the developing cat visual cortex. Schoen SW; Kreutzberg GW; Singer W Eur J Neurosci; 1993 Mar; 5(3):210-22. PubMed ID: 8261102 [TBL] [Abstract][Full Text] [Related]
4. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity. Chapman B; Jacobson MD; Reiter HO; Stryker MP Nature; 1986 Nov 13-19; 324(6093):154-6. PubMed ID: 3785380 [TBL] [Abstract][Full Text] [Related]
5. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex. Imamura K; Kasamatsu T; Tanaka S Neuroscience; 2007 Jun; 147(2):508-21. PubMed ID: 17544224 [TBL] [Abstract][Full Text] [Related]
6. Role of visual experience in promoting segregation of eye dominance patches in the visual cortex of the cat. Swindale NV J Comp Neurol; 1988 Jan; 267(4):472-88. PubMed ID: 3346371 [TBL] [Abstract][Full Text] [Related]
7. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex. Nakagama H; Tani T; Tanaka S Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978 [TBL] [Abstract][Full Text] [Related]
8. Histochemical localization of synaptic zinc in the developing cat visual cortex. Dyck R; Beaulieu C; Cynader M J Comp Neurol; 1993 Mar; 329(1):53-67. PubMed ID: 8384221 [TBL] [Abstract][Full Text] [Related]
9. Non-uniform distribution of the NMDAR1 receptor subunit in kitten visual cortex at the peak of the critical period. Murphy KM; Trepel C; Pegado VD Mol Vis; 1996 Aug; 2():9. PubMed ID: 9238086 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of axoplasmic transport in the developing visual system of the rat: IV. Quantitative Golgi, electron microscopic, and histochemical analyses of the maturation of the visual cortex. Matthews MA; Riccio RV Am J Anat; 1984 Sep; 171(1):107-31. PubMed ID: 6207722 [TBL] [Abstract][Full Text] [Related]
11. Transient association of the HNK-1 epitope with 5'-nucleotidase during development of the cat visual cortex. Vogel M; Zimmermann H; Singer W Eur J Neurosci; 1993 Nov; 5(11):1423-5. PubMed ID: 7506969 [TBL] [Abstract][Full Text] [Related]
12. Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Müller CM; Best J Nature; 1989 Nov; 342(6248):427-30. PubMed ID: 2586611 [TBL] [Abstract][Full Text] [Related]
13. [Noradrenaline and plasticity of the visual cortex of the kitten: a reexamination]. Adrien J; Buisseret P; Fregnac Y; Gary-Bobo E; Imbert M; Tassin JP; Trotter Y C R Seances Acad Sci III; 1982 Dec; 295(12):745-50. PubMed ID: 6820308 [TBL] [Abstract][Full Text] [Related]
14. Age- and experience-dependent expression of dynamin I and synaptotagmin I in cat visual system. Cnops L; Hu TT; Vanden Broeck J; Burnat K; Van Den Bergh G; Arckens L J Comp Neurol; 2007 Sep; 504(3):254-64. PubMed ID: 17640048 [TBL] [Abstract][Full Text] [Related]
15. Effects of visual deprivation upon the geniculocortical W-cell pathway in the cat: area 19 and its afferent input. Leventhal AG; Hirsch HV J Comp Neurol; 1983 Feb; 214(1):59-71. PubMed ID: 6841676 [TBL] [Abstract][Full Text] [Related]
16. Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: a current source density analysis of electrically evoked potentials. Mitzdorf U; Singer W J Comp Neurol; 1979 Sep; 187(1):71-83. PubMed ID: 114553 [TBL] [Abstract][Full Text] [Related]
17. Synaptic 5'-nucleotidase activity reflects lesion-induced sprouting within the adult rat dentate gyrus. Schoen SW; Kreutzberg GW Exp Neurol; 1994 May; 127(1):106-18. PubMed ID: 8200429 [TBL] [Abstract][Full Text] [Related]
18. The relationship between relative eye usage and ocular dominance shifts in cat visual cortex. Mower GD Brain Res Dev Brain Res; 2005 Jan; 154(1):147-51. PubMed ID: 15617764 [TBL] [Abstract][Full Text] [Related]
19. Ocular dominance columns in cat striate cortex and effects of monocular deprivation: a 2-deoxyglucose study. Kossut M; Thompson ID; Blakemore C Acta Neurobiol Exp (Wars); 1983; 43(4-5):273-82. PubMed ID: 6660054 [TBL] [Abstract][Full Text] [Related]
20. 5-HT1 receptors in the structures of visual pathway of normal and monocularly deprived kittens. Skangiel-Kramska J; Kossut M Acta Neurobiol Exp (Wars); 1992; 52(2):71-81. PubMed ID: 1414509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]