These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23585653)

  • 1. Dynamic transcriptomic profiles between tomato and a wild relative reflect distinct developmental architectures.
    Chitwood DH; Maloof JN; Sinha NR
    Plant Physiol; 2013 Jun; 162(2):537-52. PubMed ID: 23585653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato.
    Ranjan A; Budke JM; Rowland SD; Chitwood DH; Kumar R; Carriedo L; Ichihashi Y; Zumstein K; Maloof JN; Sinha NR
    Plant Physiol; 2016 Sep; 172(1):328-40. PubMed ID: 27418589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme activity profiles during fruit development in tomato cultivars and Solanum pennellii.
    Steinhauser MC; Steinhauser D; Koehl K; Carrari F; Gibon Y; Fernie AR; Stitt M
    Plant Physiol; 2010 May; 153(1):80-98. PubMed ID: 20335402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate of meristem maturation determines inflorescence architecture in tomato.
    Park SJ; Jiang K; Schatz MC; Lippman ZB
    Proc Natl Acad Sci U S A; 2012 Jan; 109(2):639-44. PubMed ID: 22203998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Metabolic Regulation by a Chromosome Segment from a Wild Relative During Fruit Development in a Tomato Introgression Line, IL8-3.
    Ikeda H; Shibuya T; Imanishi S; Aso H; Nishiyama M; Kanayama Y
    Plant Cell Physiol; 2016 Jun; 57(6):1257-70. PubMed ID: 27076398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit.
    Lima-Silva V; Rosado A; Amorim-Silva V; Muñoz-Mérida A; Pons C; Bombarely A; Trelles O; Fernández-Muñoz R; Granell A; Valpuesta V; Botella MÁ
    BMC Genomics; 2012 May; 13():187. PubMed ID: 22583865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato (
    Muñoz-Sanz JV; Tovar-Méndez A; Lu L; Dai R; McClure B
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches.
    Fukushima A; Nishizawa T; Hayakumo M; Hikosaka S; Saito K; Goto E; Kusano M
    Plant Physiol; 2012 Apr; 158(4):1487-502. PubMed ID: 22307966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem activity genes.
    Wang X; Liu D; Li A; Sun X; Zhang R; Wu L; Liang Y; Mao L
    PLoS One; 2013; 8(2):e55238. PubMed ID: 23390523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of reproductive development in tomato.
    Lozano R; Giménez E; Cara B; Capel J; Angosto T
    Int J Dev Biol; 2009; 53(8-10):1635-48. PubMed ID: 19876848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites.
    Chen H; Chen X; Chen D; Li J; Zhang Y; Wang A
    BMC Plant Biol; 2015 Jun; 15():132. PubMed ID: 26048292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.
    Pattison RJ; Csukasi F; Zheng Y; Fei Z; van der Knaap E; Catalá C
    Plant Physiol; 2015 Aug; 168(4):1684-701. PubMed ID: 26099271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of Developmental Transcriptome Maps of Arabidopsis thaliana and Solanum lycopersicum.
    Penin AA; Klepikova AV; Kasianov AS; Gerasimov ES; Logacheva MD
    Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30650673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives.
    Kortstee AJ; Appeldoorn NJ; Oortwijn ME; Visser RG
    Planta; 2007 Sep; 226(4):929-39. PubMed ID: 17516079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Madrid-Espinoza J; Salinas-Cornejo J; Ruiz-Lara S
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31450820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution.
    Jiménez-Gómez JM; Maloof JN
    BMC Plant Biol; 2009 Jul; 9():85. PubMed ID: 19575805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic variation of the flower-fruit transition in Physalis and Solanum.
    Gao H; Li J; Wang L; Zhang J; He C
    Planta; 2020 Jul; 252(2):28. PubMed ID: 32720160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the mechanism of Solanum lycopersicum and Solanum chilense flower colour formation.
    Gao M; Qu H; Gao L; Chen L; Sebastian RS; Zhao L
    Plant Biol (Stuttg); 2015 Jan; 17(1):1-8. PubMed ID: 24750468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early transcriptional responses in Solanum peruvianum and Solanum lycopersicum account for different acclimation processes during water scarcity events.
    Tapia G; González M; Burgos J; Vega MV; Méndez J; Inostroza L
    Sci Rep; 2021 Aug; 11(1):15961. PubMed ID: 34354211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species.
    Li W; Chetelat RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4417-22. PubMed ID: 25831517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.