These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23585700)

  • 1. Acoustically-coupled flow-induced vibration of a computational vocal fold model.
    Daily DJ; Thomson SL
    Comput Struct; 2013 Jan; 116():50-58. PubMed ID: 23585700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully-coupled aeroelastic simulation with fluid compressibility - For application to vocal fold vibration.
    Yang J; Wang X; Krane M; Zhang LT
    Comput Methods Appl Mech Eng; 2017 Mar; 315():584-606. PubMed ID: 29527067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model.
    Zhang Z; Neubauer J; Berry DA
    J Sound Vib; 2009 Apr; 322(1-2):299-313. PubMed ID: 20161071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration.
    Zhang LT; Yang J
    J Coupled Syst Multiscale Dyn; 2016 Dec; 4(4):241-250. PubMed ID: 29527541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model.
    Smith SL; Thomson SL
    J Fluids Struct; 2013 Apr; 38():77-91. PubMed ID: 23503699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subject-Specific Computational Fluid-Structure Interaction Modeling of Rabbit Vocal Fold Vibration.
    Avhad A; Li Z; Wilson A; Sayce L; Chang S; Rousseau B; Luo H
    Fluids (Basel); 2022 Mar; 7(3):. PubMed ID: 35480340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production.
    Jiang W; Zheng X; Xue Q
    Front Bioeng Biotechnol; 2017; 5():7. PubMed ID: 28243588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of slightly-compressible isentropic flows and its compressibility effects on fluid-structure interactions.
    Zhang LT; Krane MH; Yu F
    Comput Fluids; 2019 Mar; 182():108-117. PubMed ID: 31327880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Longitudinal Variation of Vocal Fold Inner Layer Thickness on Fluid-Structure Interaction During Voice Production.
    Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2018 Dec; 140(12):1210081-9. PubMed ID: 30098145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-structure-acoustic interaction in a human voice model.
    Becker S; Kniesburges S; Müller S; Delgado A; Link G; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2009 Mar; 125(3):1351-61. PubMed ID: 19275292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of subglottal resonance upon vocal fold vibration.
    Austin SF; Titze IR
    J Voice; 1997 Dec; 11(4):391-402. PubMed ID: 9422272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation.
    Titze IR; Talkin DT
    J Acoust Soc Am; 1979 Jul; 66(1):60-74. PubMed ID: 489833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body.
    Yao HD; Davidson L
    J Acoust Soc Am; 2019 May; 145(5):3163. PubMed ID: 31153304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of vocal tract and subglottal resonances in producing vocal instabilities.
    Wade L; Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2017 Mar; 141(3):1546. PubMed ID: 28372071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An anatomically based, time-domain acoustic model of the subglottal system for speech production.
    Ho JC; Zañartu M; Wodicka GR
    J Acoust Soc Am; 2011 Mar; 129(3):1531-47. PubMed ID: 21428517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.