These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1110 related articles for article (PubMed ID: 23585760)

  • 21. Semiparametric accelerated failure time cure rate mixture models with competing risks.
    Choi S; Zhu L; Huang X
    Stat Med; 2018 Jan; 37(1):48-59. PubMed ID: 28983935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A methodology to design heuristics for model selection based on the characteristics of data: Application to investigate when the Negative Binomial Lindley (NB-L) is preferred over the Negative Binomial (NB).
    Shirazi M; Dhavala SS; Lord D; Geedipally SR
    Accid Anal Prev; 2017 Oct; 107():186-194. PubMed ID: 28886410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modified score function for monotone likelihood in the semiparametric mixture cure model.
    Almeida FM; Colosimo EA; Mayrink VD
    Biom J; 2022 Mar; 64(3):635-654. PubMed ID: 34845768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relaxed Poisson cure rate models.
    Rodrigues J; Cordeiro GM; Cancho VG; Balakrishnan N
    Biom J; 2016 Mar; 58(2):397-415. PubMed ID: 26686485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competing risks analysis with missing cause-of-failure-penalized likelihood estimation of cause-specific Cox models.
    Lô SN; Ma J; Manuguerra M; Moreno-Betancur M; Scolyer RA; Thompson JF
    Stat Methods Med Res; 2022 May; 31(5):978-994. PubMed ID: 35037794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stochastic EM algorithm for generalized exponential cure rate model and an empirical study.
    Davies K; Pal S; Siddiqua JA
    J Appl Stat; 2021; 48(12):2112-2135. PubMed ID: 35706615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proportional hazards under Conway-Maxwell-Poisson cure rate model and associated inference.
    Balakrishnan N; Barui S; Milienos FS
    Stat Methods Med Res; 2017 Oct; 26(5):2055-2077. PubMed ID: 28523958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases.
    Lloyd-Smith JO
    PLoS One; 2007 Feb; 2(2):e180. PubMed ID: 17299582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of the cure rate in Iranian breast cancer patients.
    Rahimzadeh M; Baghestani AR; Gohari MR; Pourhoseingholi MA
    Asian Pac J Cancer Prev; 2014; 15(12):4839-42. PubMed ID: 24998549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite mixture Negative Binomial-Lindley for modeling heterogeneous crash data with many zero observations.
    Islam ASMM; Shirazi M; Lord D
    Accid Anal Prev; 2022 Sep; 175():106765. PubMed ID: 35947924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the time-dependent predictive accuracy for event-to-time outcome with a cure fraction.
    Wang Z; Wang X
    Pharm Stat; 2020 Nov; 19(6):955-974. PubMed ID: 32776646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laplacian-P-splines for Bayesian inference in the mixture cure model.
    Gressani O; Faes C; Hens N
    Stat Med; 2022 Jun; 41(14):2602-2626. PubMed ID: 35699121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A general class of promotion time cure rate models with a new biological interpretation.
    Gómez YM; Gallardo DI; Bourguignon M; Bertolli E; Calsavara VF
    Lifetime Data Anal; 2023 Jan; 29(1):66-86. PubMed ID: 36114312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term frailty modeling using a non-proportional hazards model: Application with a melanoma dataset.
    Calsavara VF; Milani EA; Bertolli E; Tomazella V
    Stat Methods Med Res; 2020 Aug; 29(8):2100-2118. PubMed ID: 31691640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Change point detection in Cox proportional hazards mixture cure model.
    Wang B; Li J; Wang X
    Stat Methods Med Res; 2021 Feb; 30(2):440-457. PubMed ID: 32970523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximum likelihood estimation of semiparametric mixture component models for competing risks data.
    Choi S; Huang X
    Biometrics; 2014 Sep; 70(3):588-98. PubMed ID: 24734912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death: a latent process and latent class approach.
    Proust-Lima C; Dartigues JF; Jacqmin-Gadda H
    Stat Med; 2016 Feb; 35(3):382-98. PubMed ID: 26376900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A power series beta Weibull regression model for predicting breast carcinoma.
    Ortega EM; Cordeiro GM; Campelo AK; Kattan MW; Cancho VG
    Stat Med; 2015 Apr; 34(8):1366-88. PubMed ID: 25620602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-Term Disease-Free Survival of Non-Metastatic Breast Cancer Patients in Iran: A Survival Model with Competing Risks Taking Cure Fraction and Frailty into Account.
    Ghavami V; Mahmoudi M; Rahimi Foroushani A; Baghishani H; Homaei Shandiz F; Yaseri M
    Asian Pac J Cancer Prev; 2017 Oct; 18(10):2825-2832. PubMed ID: 29072428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding competing risks: a simulation point of view.
    Allignol A; Schumacher M; Wanner C; Drechsler C; Beyersmann J
    BMC Med Res Methodol; 2011 Jun; 11():86. PubMed ID: 21639902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 56.