These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 23585770)
1. Glassy Interfacial Dynamics of Ni Nanoparticles: Part II Discrete Breathers as an Explanation of Two-Level Energy Fluctuations. Zhang H; Douglas JF Soft Matter; 2013 Jan; 9(4):1266-1280. PubMed ID: 23585770 [TBL] [Abstract][Full Text] [Related]
2. Glassy Interfacial Dynamics of Ni Nanoparticles: Part I Colored Noise, Dynamic Heterogeneity and Collective Atomic Motion. Zhang H; Douglas JF Soft Matter; 2013 Jan; 9(4):1254-1265. PubMed ID: 25170342 [TBL] [Abstract][Full Text] [Related]
3. String-like collective motion and diffusion in the interfacial region of ice. Wang X; Tong X; Zhang H; Douglas JF J Chem Phys; 2017 Nov; 147(19):194508. PubMed ID: 29166091 [TBL] [Abstract][Full Text] [Related]
4. Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles. Haddadian EJ; Zhang H; Freed KF; Douglas JF Sci Rep; 2017 Feb; 7():41671. PubMed ID: 28176808 [TBL] [Abstract][Full Text] [Related]
5. String-like collective atomic motion in the melting and freezing of nanoparticles. Zhang H; Kalvapalle P; Douglas JF J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061 [TBL] [Abstract][Full Text] [Related]
6. String-like cooperative motion in homogeneous melting. Zhang H; Khalkhali M; Liu Q; Douglas JF J Chem Phys; 2013 Mar; 138(12):12A538. PubMed ID: 23556789 [TBL] [Abstract][Full Text] [Related]
7. Influence of string-like cooperative atomic motion on surface diffusion in the (110) interfacial region of crystalline Ni. Zhang H; Yang Y; Douglas JF J Chem Phys; 2015 Feb; 142(8):084704. PubMed ID: 25725748 [TBL] [Abstract][Full Text] [Related]
8. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys. Zhang H; Zhong C; Douglas JF; Wang X; Cao Q; Zhang D; Jiang JZ J Chem Phys; 2015 Apr; 142(16):164506. PubMed ID: 25933773 [TBL] [Abstract][Full Text] [Related]
9. Origin and nature of spontaneous shape fluctuations in "small" nanoparticles. Yang Y; Zhang H; Douglas JF ACS Nano; 2014 Jul; 8(7):7465-77. PubMed ID: 24992502 [TBL] [Abstract][Full Text] [Related]
10. Single-particle dynamics near the glass transition of a metallic glass. Lü YJ; Wang WH Phys Rev E; 2016 Dec; 94(6-1):062611. PubMed ID: 28085459 [TBL] [Abstract][Full Text] [Related]
11. String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt. Pazmiño Betancourt BA; Starr FW; Douglas JF J Chem Phys; 2018 Mar; 148(10):104508. PubMed ID: 29544276 [TBL] [Abstract][Full Text] [Related]
12. Fast dynamics in a model metallic glass-forming material. Zhang H; Wang X; Yu HB; Douglas JF J Chem Phys; 2021 Feb; 154(8):084505. PubMed ID: 33639730 [TBL] [Abstract][Full Text] [Related]
13. Single-particle fluctuations dominate the long-time dynamic susceptibility in glass-forming liquids. Pandit RK; Flenner E; Castillo HE Phys Rev E; 2022 Jan; 105(1-1):014605. PubMed ID: 35193298 [TBL] [Abstract][Full Text] [Related]
14. Grain boundaries exhibit the dynamics of glass-forming liquids. Zhang H; Srolovitz DJ; Douglas JF; Warren JA Proc Natl Acad Sci U S A; 2009 May; 106(19):7735-40. PubMed ID: 19416913 [TBL] [Abstract][Full Text] [Related]
15. A closer examination of the nature of atomic motion in the interfacial region of crystals upon approaching melting. Zhang J; Zhang H; Douglas JF J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38511662 [TBL] [Abstract][Full Text] [Related]
17. Relation between concentration fluctuations and dynamical heterogeneities in binary glass-forming liquids: A molecular dynamics simulation study. Müller N; Vogel M J Chem Phys; 2019 Feb; 150(6):064502. PubMed ID: 30770017 [TBL] [Abstract][Full Text] [Related]
18. Collective stringlike motion of semiflexible filamentous particles in columnar liquid crystalline phases. Naderi S; van der Schoot P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032307. PubMed ID: 24125268 [TBL] [Abstract][Full Text] [Related]
19. Localization model description of the interfacial dynamics of crystalline Cu and [Formula: see text] metallic glass nanoparticles. Mahmud G; Zhang H; Douglas JF Eur Phys J E Soft Matter; 2021 Mar; 44(3):33. PubMed ID: 33728521 [TBL] [Abstract][Full Text] [Related]
20. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics. Wang JG; Li Q; Peng X; McKenna GB; Zia RN Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]