BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23586428)

  • 1. Bioconversion of resveratrol using resting cells of non-genetically modified Alternaria sp.
    Zhang J; Shi J; Liu Y
    Biotechnol Appl Biochem; 2013; 60(2):236-43. PubMed ID: 23586428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production.
    Shi J; Zeng Q; Liu Y; Pan Z
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):369-79. PubMed ID: 22526800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrates and enzyme activities related to biotransformation of resveratrol from phenylalanine by Alternaria sp. MG1.
    Zhang J; Shi J; Liu Y
    Appl Microbiol Biotechnol; 2013 Dec; 97(23):9941-54. PubMed ID: 24068334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Approach to Produce Resveratrol by Enzymatic Bioconversion.
    Che J; Shi J; Gao Z; Zhang Y
    J Microbiol Biotechnol; 2016 Aug; 26(8):1348-57. PubMed ID: 27116990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1.
    Lu Y; Ye C; Che J; Xu X; Shao D; Jiang C; Liu Y; Shi J
    Microb Cell Fact; 2019 Jan; 18(1):13. PubMed ID: 30678677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Optimization of biotransformation of ursolic acid by alternaria longipes].
    Yan H; Wang X; Gao Y; Liu D
    Zhongguo Zhong Yao Za Zhi; 2012 Aug; 37(15):2280-5. PubMed ID: 23189734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomics Reveals the Response of the Phenylpropanoid Biosynthesis Pathway to Starvation Treatment in the Grape Endophyte
    Lu Y; Che J; Xu X; Pang B; Zhao X; Liu Y; Shi J
    J Agric Food Chem; 2020 Jan; 68(4):1126-1135. PubMed ID: 31891261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of reference genes for normalization of gene expression by qRT-PCR in a resveratrol-producing entophytic fungus (Alternaria sp. MG1).
    Che JX; Shi JL; Lu Y; Liu YL
    AMB Express; 2016 Dec; 6(1):106. PubMed ID: 27826948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome Analysis Reveals the Genetic Basis of the Resveratrol Biosynthesis Pathway in an Endophytic Fungus (Alternaria sp. MG1) Isolated from Vitis vinifera.
    Che J; Shi J; Gao Z; Zhang Y
    Front Microbiol; 2016; 7():1257. PubMed ID: 27588016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biotransformation of daidzein by resting cell system of bacterial strain isolated from bovine rumen gastric juice].
    Zhang Q; Wang X; Wang S; Hao Q; Guo Y; Wang S
    Sheng Wu Gong Cheng Xue Bao; 2010 Jan; 26(1):35-41. PubMed ID: 20353090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential application of CHS and 4CL genes from grape endophytic fungus in production of naringenin and resveratrol and the improvement of polyphenol profiles and flavour of wine.
    Lu Y; Song Y; Zhu J; Xu X; Pang B; Jin H; Jiang C; Liu Y; Shi J
    Food Chem; 2021 Jun; 347():128972. PubMed ID: 33453581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of polydatin to resveratrol in Polygonum cuspidatum roots by highly immobilized edible Aspergillus niger and Yeast.
    Jin S; Luo M; Wang W; Zhao CJ; Gu CB; Li CY; Zu YG; Fu YJ; Guan Y
    Bioresour Technol; 2013 May; 136():766-70. PubMed ID: 23566471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima.
    Ismaiel AA; Ahmed AS; Hassan IA; El-Sayed ER; Karam El-Din AA
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5831-5846. PubMed ID: 28612104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimum fermentation model established by genetic algorithm for biotransformation from crude polydatin to resveratrol.
    Chong Y; Yan A; Yang X; Cai Y; Chen J
    Appl Biochem Biotechnol; 2012 Jan; 166(2):446-57. PubMed ID: 22081329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic transformation of polydatin to resveratrol by piceid-β-D-glucosidase from Aspergillus oryzae.
    Chen M; Li D; Gao Z; Zhang C
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1411-6. PubMed ID: 24362562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of Pinoresinol Diglucoside from Glucose Using Resting and Freeze-Dried
    Gao Z; Riaz Rajoka M; Zhu J; Zhang Z; Zhang Y; Che J; Xu X; Shi J
    J Microbiol Biotechnol; 2017 Aug; 27(8):1428-1440. PubMed ID: 28621107
    [No Abstract]   [Full Text] [Related]  

  • 17. Alpha-amylase production by toxigenic fungi.
    Shafique S; Bajwa R; Shafique S
    Nat Prod Res; 2010 Sep; 24(15):1449-56. PubMed ID: 20812132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L.
    Sun J; Awakawa T; Noguchi H; Abe I
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6397-400. PubMed ID: 22967766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Bioconversion of
    Park SH; Jeong YJ; Park SC; Kim S; Kim YG; Shin G; Jeong HJ; Ryu YB; Lee J; Lee OR; Jeong JC; Kim CY
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457219
    [No Abstract]   [Full Text] [Related]  

  • 20. Efficient pullulan production by bioconversion using Aureobasidium pullulans as the whole-cell catalyst.
    Ju XM; Wang DH; Zhang GC; Cao D; Wei GY
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):211-20. PubMed ID: 25277414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.