These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23586602)

  • 1. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique.
    Joo SJ; Park SH; Moon CJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink.
    Chen X; Wu X; Shao S; Zhuang J; Xie L; Nie S; Su W; Chen Z; Cui Z
    Sci Rep; 2017 Oct; 7(1):13239. PubMed ID: 29038555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics.
    Hwang HJ; Chung WH; Kim HS
    Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-pulsed white light sintering of printed Cu nanoinks.
    Han WS; Hong JM; Kim HS; Song YW
    Nanotechnology; 2011 Sep; 22(39):395705. PubMed ID: 21896978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate.
    Wu X; Shao S; Chen Z; Cui Z
    Nanotechnology; 2017 Jan; 28(3):035203. PubMed ID: 27941231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds.
    Kang H; Sowade E; Baumann RR
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1682-7. PubMed ID: 24433059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink.
    Hwang HJ; Oh KH; Kim HS
    Sci Rep; 2016 Jan; 6():19696. PubMed ID: 26806215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of chemical kinetics for sub-10 nm Cu nanoparticles to fabricate highly conductive ink below 150 °C.
    Choi CS; Jo YH; Kim MG; Lee HM
    Nanotechnology; 2012 Feb; 23(6):065601. PubMed ID: 22248919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Hybrid Ink Formulation and IPL Sintering Process for Ink-Jet 3D Printing.
    Lee JY; Choi CS; Hwang KT; Han KS; Kim JH; Nahm S; Kim BS
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light.
    Chung WY; Lai YC; Yonezawa T; Liao YC
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.
    Hwang YT; Chung WH; Jang YR; Kim HS
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.
    Chung WH; Hwang YT; Lee SH; Kim HS
    Nanotechnology; 2016 May; 27(20):205704. PubMed ID: 27070756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low sintering temperature and electrical performance of nanoparticle copper ink for use in ink-jet printing.
    Cho MS; Choi WH; Kim SG; Kim IH; Lee Y
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6888-91. PubMed ID: 21137818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.