BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2358666)

  • 21. Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system.
    Kus L; Borys E; Ping Chu Y; Ferguson SM; Blakely RD; Emborg ME; Kordower JH; Levey AI; Mufson EJ
    J Comp Neurol; 2003 Aug; 463(3):341-57. PubMed ID: 12820166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry.
    Satoh K; Armstrong DM; Fibiger HC
    Brain Res Bull; 1983 Dec; 11(6):693-720. PubMed ID: 6362780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topography and organization of cranial nerve nuclei in the sand lizard, Lacerta agilis.
    Székely G; Matesz C
    J Comp Neurol; 1988 Jan; 267(4):525-44. PubMed ID: 3346375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-localization of nitric oxide synthase and choline acetyltransferase in the brain of the goldfish (Carassius auratus).
    Giraldez-Perez RM; Gaytan SP; Torres B; Pasaro R
    J Chem Neuroanat; 2009 Jan; 37(1):1-17. PubMed ID: 18804528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of choline acetyltransferase-immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinus L.).
    Ekström P
    J Comp Neurol; 1987 Feb; 256(4):494-515. PubMed ID: 3549797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embryonic development of choline acetyltransferase in thoracic spinal motor neurons: somatic and autonomic neurons may be derived from a common cellular group.
    Phelps PE; Barber RP; Vaughn JE
    J Comp Neurol; 1991 May; 307(1):77-86. PubMed ID: 1856322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunocytochemical localization of the choline acetyltransferase containing neuron system in the rat lower brain stem.
    Tatehata T; Shiosaka S; Wanaka A; Rao ZR; Tohyama M
    J Hirnforsch; 1987; 28(6):707-16. PubMed ID: 3440837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase.
    Armstrong DM; Saper CB; Levey AI; Wainer BH; Terry RD
    J Comp Neurol; 1983 May; 216(1):53-68. PubMed ID: 6345598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholinergic somata and terminals in the rat substantia nigra: an immunocytochemical study with optical and electron microscopic techniques.
    Martínez-Murillo R; Villalba R; Montero-Caballero MI; Rodrigo J
    J Comp Neurol; 1989 Mar; 281(3):397-415. PubMed ID: 2703554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The motor nuclei of the glossopharyngeal-vagal and the accessorius nerves in the rat.
    Matesz C; Székely G
    Acta Biol Hung; 1983; 34(2-3):215-29. PubMed ID: 6198828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subsurface cisterns in alpha-motoneurons of the rat and cat: immunohistochemical detection with antibodies against connexin32.
    Yamamoto T; Hertzberg EL; Nagy JI
    Synapse; 1991 Jun; 8(2):119-36. PubMed ID: 1652794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of choline acetyltransferase and nerve growth factor receptor within hypoglossal motoneurons following nerve injury.
    Armstrong DM; Brady R; Hersh LB; Hayes RC; Wiley RG
    J Comp Neurol; 1991 Feb; 304(4):596-607. PubMed ID: 1849521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis.
    López JM; Smeets WJ; González A
    J Comp Neurol; 2002 Nov; 453(4):418-34. PubMed ID: 12389211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Choline acetyltransferase-immunoreactive neurons and terminals in the rat septal complex: a combined light and electron microscopic study.
    Bialowas J; Frotscher M
    J Comp Neurol; 1987 May; 259(2):298-307. PubMed ID: 3294933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ hybridization study of the distribution of choline acetyltransferase mRNA and its splice variants in the mouse brain and spinal cord.
    Trifonov S; Houtani T; Hamada S; Kase M; Maruyama M; Sugimoto T
    Neuroscience; 2009 Mar; 159(1):344-57. PubMed ID: 19162134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HCN1 ion channel immunoreactivity in spinal cord and medulla oblongata.
    Milligan CJ; Edwards IJ; Deuchars J
    Brain Res; 2006 Apr; 1081(1):79-91. PubMed ID: 16503331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad.
    Oka Y; Takeuchi H; Satou M; Ueda K
    J Comp Neurol; 1987 May; 259(3):400-23. PubMed ID: 3584564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increase in alpha-CGRP and GAP-43 in aged motoneurons: a study of peptides, growth factors, and ChAT mRNA in the lumbar spinal cord of senescent rats with symptoms of hindlimb incapacities.
    Johnson H; Mossberg K; Arvidsson U; Piehl F; Hökfelt T; Ulfhake B
    J Comp Neurol; 1995 Aug; 359(1):69-89. PubMed ID: 8557848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmental and regional expression of choline acetyltransferase mRNA in the rat central nervous system.
    Ibáñez CF; Ernfors P; Persson H
    J Neurosci Res; 1991 Jun; 29(2):163-71. PubMed ID: 1890697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for coexistence of choline acetyltransferase (ChAT)- and calcitonin gene-related peptide (CGRP)-immunoreactivity in the thoracolumbar and sacral spinal cord neurons of the pig.
    Całka J; Franke-Radowiecka A; Załecki M; Łakomy M
    Pol J Vet Sci; 2009; 12(1):61-7. PubMed ID: 19459441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.