These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23586665)

  • 21. The photochemical reaction cycle of proteorhodopsin at low pH.
    Lakatos M; Lanyi JK; Szakács J; Váró G
    Biophys J; 2003 May; 84(5):3252-6. PubMed ID: 12719254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum.
    Siletsky SA; Mamedov MD; Lukashev EP; Balashov SP; Dolgikh DA; Rubin AB; Kirpichnikov MP; Petrovskaya LE
    Biochim Biophys Acta; 2016 Nov; 1857(11):1741-1750. PubMed ID: 27528561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227.
    Imasheva ES; Balashov SP; Wang JM; Dioumaev AK; Lanyi JK
    Biochemistry; 2004 Feb; 43(6):1648-55. PubMed ID: 14769042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. L105K mutant of proteorhodopsin.
    Maiti TK; Yamada K; Inoue K; Kandori H
    Biochemistry; 2012 Apr; 51(15):3198-204. PubMed ID: 22458882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface.
    Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK
    Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-dependent photoisomerization of retinal in proteorhodopsin.
    Huber R; Köhler T; Lenz MO; Bamberg E; Kalmbach R; Engelhard M; Wachtveitl J
    Biochemistry; 2005 Feb; 44(6):1800-6. PubMed ID: 15697205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state.
    Borucki B; Otto H; Joshi CP; Gasperi C; Cusanovich MA; Devanathan S; Tollin G; Heyn MP
    Biochemistry; 2003 Jul; 42(29):8780-90. PubMed ID: 12873139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin.
    Brown LS; Dioumaev AK; Lanyi JK; Spudich EN; Spudich JL
    J Biol Chem; 2001 Aug; 276(35):32495-505. PubMed ID: 11435422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-promoted rhodopsin expression and starvation survival in the marine dinoflagellate Oxyrrhis marina.
    Guo Z; Zhang H; Lin S
    PLoS One; 2014; 9(12):e114941. PubMed ID: 25506945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH.
    Siletsky SA; Lukashev EP; Mamedov MD; Borisov VB; Balashov SP; Dolgikh DA; Rubin AB; Kirpichnikov MP; Petrovskaya LE
    Biochim Biophys Acta Bioenerg; 2021 Jan; 1862(1):148328. PubMed ID: 33075275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements.
    Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M
    J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes.
    Ran T; Ozorowski G; Gao Y; Sineshchekov OA; Wang W; Spudich JL; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):1965-80. PubMed ID: 24100316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Different structural changes occur in blue- and green-proteorhodopsins during the primary photoreaction.
    Amsden JJ; Kralj JM; Bergo VB; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 2008 Nov; 47(44):11490-8. PubMed ID: 18842006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photocycle in the M-form in bacteriorhodopsin mutants devoid of primary proton acceptor Asp-85.
    Lukashev EP; Kolodner P
    Membr Cell Biol; 2001; 14(6):715-25. PubMed ID: 11817568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton transport by halorhodopsin.
    Váró G; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 May; 35(21):6604-11. PubMed ID: 8639608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoinduced proton release in proteorhodopsin at low pH: the possibility of a decrease in the pK(a) of Asp227.
    Tamogami J; Kikukawa T; Nara T; Shimono K; Demura M; Kamo N
    Biochemistry; 2012 Nov; 51(46):9290-301. PubMed ID: 23095117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast Photoinduced Deactivation Dynamics of Proteorhodopsin.
    Eckert CE; Kaur J; Glaubitz C; Wachtveitl J
    J Phys Chem Lett; 2017 Jan; 8(2):512-517. PubMed ID: 28072545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple functions of Schiff base counterion in rhodopsins.
    Tsutsui K; Shichida Y
    Photochem Photobiol Sci; 2010 Nov; 9(11):1426-34. PubMed ID: 20842311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.