These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398 [TBL] [Abstract][Full Text] [Related]
27. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state. Borucki B; Otto H; Joshi CP; Gasperi C; Cusanovich MA; Devanathan S; Tollin G; Heyn MP Biochemistry; 2003 Jul; 42(29):8780-90. PubMed ID: 12873139 [TBL] [Abstract][Full Text] [Related]
28. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
30. Light-promoted rhodopsin expression and starvation survival in the marine dinoflagellate Oxyrrhis marina. Guo Z; Zhang H; Lin S PLoS One; 2014; 9(12):e114941. PubMed ID: 25506945 [TBL] [Abstract][Full Text] [Related]
31. His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH. Siletsky SA; Lukashev EP; Mamedov MD; Borisov VB; Balashov SP; Dolgikh DA; Rubin AB; Kirpichnikov MP; Petrovskaya LE Biochim Biophys Acta Bioenerg; 2021 Jan; 1862(1):148328. PubMed ID: 33075275 [TBL] [Abstract][Full Text] [Related]
32. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements. Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704 [TBL] [Abstract][Full Text] [Related]
33. Coupling of protonation switches during rhodopsin activation. Vogel R; Sakmar TP; Sheves M; Siebert F Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345 [TBL] [Abstract][Full Text] [Related]
34. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Ran T; Ozorowski G; Gao Y; Sineshchekov OA; Wang W; Spudich JL; Luecke H Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):1965-80. PubMed ID: 24100316 [TBL] [Abstract][Full Text] [Related]
35. Different structural changes occur in blue- and green-proteorhodopsins during the primary photoreaction. Amsden JJ; Kralj JM; Bergo VB; Spudich EN; Spudich JL; Rothschild KJ Biochemistry; 2008 Nov; 47(44):11490-8. PubMed ID: 18842006 [TBL] [Abstract][Full Text] [Related]
36. Photocycle in the M-form in bacteriorhodopsin mutants devoid of primary proton acceptor Asp-85. Lukashev EP; Kolodner P Membr Cell Biol; 2001; 14(6):715-25. PubMed ID: 11817568 [TBL] [Abstract][Full Text] [Related]
37. Proton transport by halorhodopsin. Váró G; Brown LS; Needleman R; Lanyi JK Biochemistry; 1996 May; 35(21):6604-11. PubMed ID: 8639608 [TBL] [Abstract][Full Text] [Related]
38. Photoinduced proton release in proteorhodopsin at low pH: the possibility of a decrease in the pK(a) of Asp227. Tamogami J; Kikukawa T; Nara T; Shimono K; Demura M; Kamo N Biochemistry; 2012 Nov; 51(46):9290-301. PubMed ID: 23095117 [TBL] [Abstract][Full Text] [Related]