These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 23586830)
1. Derivation of islet-like cells from mesenchymal stem cells using PDX1-transducing lentiviruses. Talebi S; Aleyasin A; Soleimani M; Massumi M Biotechnol Appl Biochem; 2012; 59(3):205-12. PubMed ID: 23586830 [TBL] [Abstract][Full Text] [Related]
2. Human umbilical cord-derived mesenchymal stem cells can secrete insulin in vitro and in vivo. Boroujeni ZN; Aleyasin A Biotechnol Appl Biochem; 2014; 61(2):82-92. PubMed ID: 23725211 [TBL] [Abstract][Full Text] [Related]
3. Adult rat liver cells transdifferentiated with lentiviral IPF1 vectors reverse diabetes in mice: an ex vivo gene therapy approach. Fodor A; Harel C; Fodor L; Armoni M; Salmon P; Trono D; Karnieli E Diabetologia; 2007 Jan; 50(1):121-30. PubMed ID: 17131142 [TBL] [Abstract][Full Text] [Related]
4. [Induced differentiation of human umbilical cord mesenchymal stem modified by cells Pdx1gene into islet beta-like cells in vitro]. Wang J; Gao Y; Lu Y; Tang X; He D; Zhang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1175-80, 1206. PubMed ID: 22295709 [TBL] [Abstract][Full Text] [Related]
5. Coexpression of Pdx1 and betacellulin in mesenchymal stem cells could promote the differentiation of nestin-positive epithelium-like progenitors and pancreatic islet-like spheroids. Li L; Li F; Qi H; Feng G; Yuan K; Deng H; Zhou H Stem Cells Dev; 2008 Aug; 17(4):815-23. PubMed ID: 18439098 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro. He D; Wang J; Gao Y; Zhang Y Int J Mol Med; 2011 Dec; 28(6):1019-24. PubMed ID: 21837359 [TBL] [Abstract][Full Text] [Related]
7. Maturation of adult beta-cells revealed using a Pdx1/insulin dual-reporter lentivirus. Szabat M; Luciani DS; Piret JM; Johnson JD Endocrinology; 2009 Apr; 150(4):1627-35. PubMed ID: 19095744 [TBL] [Abstract][Full Text] [Related]
8. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages. Limbert C; Päth G; Ebert R; Rothhammer V; Kassem M; Jakob F; Seufert J Cytotherapy; 2011 Aug; 13(7):802-13. PubMed ID: 21506889 [TBL] [Abstract][Full Text] [Related]
9. Reversal of streptozotocin-induced diabetes in rats by gene therapy with betacellulin and pancreatic duodenal homeobox-1. Chen S; Ding J; Yu C; Yang B; Wood DR; Grayburn PA Gene Ther; 2007 Jul; 14(14):1102-10. PubMed ID: 17460716 [TBL] [Abstract][Full Text] [Related]
10. Programming of human umbilical cord mesenchymal stem cells in vitro to promote pancreatic gene expression. Wang H; Yang Y; Ho G; Lin X; Wu W; Li W; Lin L; Feng X; Huo X; Jiang J; Liu X; Huang T; Wei C; Ma L Mol Med Rep; 2013 Sep; 8(3):769-74. PubMed ID: 23900717 [TBL] [Abstract][Full Text] [Related]
11. Insulin producing cells established using non-integrated lentiviral vector harboring PDX1 gene. Boroujeni ZN; Aleyasin A World J Stem Cells; 2013 Oct; 5(4):217-28. PubMed ID: 24179609 [TBL] [Abstract][Full Text] [Related]
12. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Kajiyama H; Hamazaki TS; Tokuhara M; Masui S; Okabayashi K; Ohnuma K; Yabe S; Yasuda K; Ishiura S; Okochi H; Asashima M Int J Dev Biol; 2010; 54(4):699-705. PubMed ID: 19757377 [TBL] [Abstract][Full Text] [Related]
13. Expression of Pdx1 mediates differentiation from mesenchymal stem cells into insulin-producing cells. Yuan H; Li J; Xin N; Zhao Z; Qin G Mol Biol Rep; 2010 Dec; 37(8):4023-31. PubMed ID: 20306305 [TBL] [Abstract][Full Text] [Related]
14. Reprogramming human umbilical cord mesenchymal stromal cells to islet-like cells with the use of in vitro-synthesized pancreatic-duodenal homebox 1 messenger RNA. Wang XL; Hu P; Guo XR; Yan D; Yuan Y; Yan SR; Li DS Cytotherapy; 2014 Nov; 16(11):1519-1527. PubMed ID: 25287601 [TBL] [Abstract][Full Text] [Related]
15. [Feasibility of bone marrow mesenchymal stem cells differentiation in diabetic pancreatic microenvironment]. Xie H; Chang C; Jiang J; Li Q; Qi H; Deng C; Li F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 May; 25(5):597-601. PubMed ID: 21675121 [TBL] [Abstract][Full Text] [Related]
16. Impact of different pancreatic microenvironments on improvement in hyperglycemia and insulin deficiency in diabetic rats after transplantation of allogeneic mesenchymal stromal cells. Katuchova J; Tothova T; Farkasova Iannaccone S; Toporcer T; Harvanova D; Hildebrand T; Kilik R; Bacenkova D; Frohlichova L; Rosocha J; Bobrov N; Radonak J J Surg Res; 2012 Nov; 178(1):188-95. PubMed ID: 22480834 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of insulin production in canine bone marrow derived mesenchymal stem cells. Takemitsu H; Zhao D; Ishikawa S; Michishita M; Arai T; Yamamoto I Gen Comp Endocrinol; 2013 Aug; 189():1-6. PubMed ID: 23624121 [TBL] [Abstract][Full Text] [Related]
18. The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by MiR-375 and Anti-MiR-9. Jafarian A; Taghikani M; Abroun S; Allahverdi A; Lamei M; Lakpour N; Soleimani M PLoS One; 2015; 10(6):e0128650. PubMed ID: 26047014 [TBL] [Abstract][Full Text] [Related]
19. Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1- and Pdx1-VP16 mediated by lentiviral vectors. Tang DQ; Lu S; Sun YP; Rodrigues E; Chou W; Yang C; Cao LZ; Chang LJ; Yang LJ Lab Invest; 2006 Jan; 86(1):83-93. PubMed ID: 16294197 [TBL] [Abstract][Full Text] [Related]
20. Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats. Hao H; Liu J; Shen J; Zhao Y; Liu H; Hou Q; Tong C; Ti D; Dong L; Cheng Y; Mu Y; Liu J; Fu X; Han W Biochem Biophys Res Commun; 2013 Jul; 436(3):418-23. PubMed ID: 23770360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]