BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 23586831)

  • 1. Substrate binding-dissociation and intermolecular electron transfer in cytochrome c oxidase are driven by energy-dependent conformational changes in the enzyme and substrate.
    Ashe D; Alleyne T; Sampson V
    Biotechnol Appl Biochem; 2012; 59(3):213-22. PubMed ID: 23586831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c/cytochrome c oxidase interaction. Direct structural evidence for conformational changes during enzyme turnover.
    Sampson V; Alleyne T
    Eur J Biochem; 2001 Dec; 268(24):6534-44. PubMed ID: 11737208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the specifics of substrate binding for cytochrome c oxidase: a computer assisted approach.
    Sampson VB; Alleyne T; Ashe D
    West Indian Med J; 2009 Jan; 58(1):54-60. PubMed ID: 19565999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the slow to fast switch in cytochrome c oxidase catalysis by introducing a loop flip near the enzyme's cytochrome c (substrate) binding site.
    Alleyne T; Ignacio DN; Sampson VB; Ashe D; Wilson M
    Biotechnol Appl Biochem; 2017 Sep; 64(5):677-685. PubMed ID: 27489224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods.
    Dodson ED; Zhao XJ; Caughey WS; Elliott CM
    Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer kinetics during the reduction and turnover of the cytochrome caa3 complex from Bacillus subtilis.
    Assempour M; Lim D; Hill BC
    Biochemistry; 1998 Jul; 37(28):9991-8. PubMed ID: 9665704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural analysis of the transient interaction between the cytochrome bc1 complex and its substrate cytochrome c.
    Nyola A; Hunte C
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):981-5. PubMed ID: 18793174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early electron transfer in cytochrome c oxidase occurs by a chymotrypsin type relay.
    Alleyne T; Sampson VB
    West Indian Med J; 2009 Dec; 58(6):499-505. PubMed ID: 20583674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-dependent interactions between reduced/oxidized cytochrome c and cytochrome c oxidase evaluated by in-situ electrochemical surface plasmon resonance.
    Hou Y; An J; Deng C; Chen S; Xiang J
    Anal Bioanal Chem; 2016 Jul; 408(18):4935-41. PubMed ID: 27215638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox state of peroxy and ferryl intermediates in cytochrome c oxidase catalysis.
    Fabian M; Palmer G
    Biochemistry; 1999 May; 38(19):6270-5. PubMed ID: 10320356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site.
    Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S
    Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Docking of cytochrome c6 and plastocyanin to the aa3-type cytochrome c oxidase in the cyanobacterium Phormidium laminosum.
    Hart SE; Howe CJ; Mizuguchi K; Fernandez-Recio J
    Protein Eng Des Sel; 2008 Dec; 21(12):689-98. PubMed ID: 18824464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibodies as probes of cytochrome oxidase structure and function.
    Nicholls P; Cooper CE; Leece B; Freedman JA; Chan SH
    Prog Clin Biol Res; 1988; 274():637-51. PubMed ID: 2841682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new model for the evolution of carnivory in the bladderwort plant (utricularia): adaptive changes in cytochrome C oxidase (COX) provide respiratory power.
    Laakkonen L; Jobson RW; Albert VA
    Plant Biol (Stuttg); 2006 Nov; 8(6):758-64. PubMed ID: 17203431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome c oxidase, ligands and electrons.
    Brunori M; Giuffrè A; Sarti P
    J Inorg Biochem; 2005 Jan; 99(1):324-36. PubMed ID: 15598510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-linked conformational changes in bovine heart cytochrome c oxidase: picosecond time-resolved fluorescence studies of cyanide complex.
    Das TK; Mazumdar S
    Biopolymers; 2000; 57(5):316-22. PubMed ID: 10958323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic and structural contributions of critical surface and internal residues to cytochrome c electron transfer reactivity.
    Rafferty SP; Guillemette JG; Berghuis AM; Smith M; Brayer GD; Mauk AG
    Biochemistry; 1996 Aug; 35(33):10784-92. PubMed ID: 8718869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors determining electron-transfer rates in cytochrome c oxidase: studies of the FQ(I-391) mutant of the Rhodobacter sphaeroides enzyme.
    Adelroth P; Mitchell DM; Gennis RB; Brzezinski P
    Biochemistry; 1997 Sep; 36(39):11787-96. PubMed ID: 9305969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on partially reduced mammalian cytochrome oxidase reactions with ferrocytochrome c.
    Greenwood C; Brittain T
    Biochem J; 1976 Sep; 157(3):591-8. PubMed ID: 186026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome c oxidase exhibits a rapid conformational change upon reduction of CuA: a tryptophan fluorescence study.
    Copeland RA; Smith PA; Chan SI
    Biochemistry; 1987 Nov; 26(23):7311-6. PubMed ID: 2827752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.