BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23587000)

  • 1. Oxygen activation and redox partner binding in cytochromes P450.
    Poulos TL; Madrona Y
    Biotechnol Appl Biochem; 2013; 60(1):128-33. PubMed ID: 23587000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam.
    Meharenna YT; Li H; Hawkes DB; Pearson AG; De Voss J; Poulos TL
    Biochemistry; 2004 Jul; 43(29):9487-94. PubMed ID: 15260491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of substrate-free and nitrosyl cytochrome P450cin: implications for O(2) activation.
    Madrona Y; Tripathi S; Li H; Poulos TL
    Biochemistry; 2012 Aug; 51(33):6623-31. PubMed ID: 22775403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Updating the Paradigm: Redox Partner Binding and Conformational Dynamics in Cytochromes P450.
    Poulos TL; Follmer AH
    Acc Chem Res; 2022 Feb; 55(3):373-380. PubMed ID: 34965086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for effector control and redox partner recognition in cytochrome P450.
    Tripathi S; Li H; Poulos TL
    Science; 2013 Jun; 340(6137):1227-30. PubMed ID: 23744947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of cindoxin, the P450cin redox partner.
    Madrona Y; Hollingsworth SA; Tripathi S; Fields JB; Rwigema JC; Tobias DJ; Poulos TL
    Biochemistry; 2014 Mar; 53(9):1435-46. PubMed ID: 24533927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediates in P450 catalysis.
    Poulos TL
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):793-806; discussion 1035-40. PubMed ID: 15901536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand and Redox Partner Binding Generates a New Conformational State in Cytochrome P450cam (CYP101A1).
    Follmer AH; Tripathi S; Poulos TL
    J Am Chem Soc; 2019 Feb; 141(6):2678-2683. PubMed ID: 30672701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site analysis of P450 enzymes: comparative magnetic circular dichroism spectroscopy.
    Andersson LA; Johnson AK; Peterson JA
    Arch Biochem Biophys; 1997 Sep; 345(1):79-87. PubMed ID: 9281314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome P450cin (CYP176A1).
    Stok JE; Slessor KE; Farlow AJ; Hawkes DB; De Voss JJ
    Adv Exp Med Biol; 2015; 851():319-39. PubMed ID: 26002741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational selectivity in cytochrome P450 redox partner interactions.
    Hollingsworth SA; Batabyal D; Nguyen BD; Poulos TL
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8723-8. PubMed ID: 27439869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris.
    Bell SG; Xu F; Forward I; Bartlam M; Rao Z; Wong LL
    J Mol Biol; 2008 Nov; 383(3):561-74. PubMed ID: 18762195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of P450 BM3--examination of substrate-induced conformational change.
    Chang YT; Loew GH
    J Biomol Struct Dyn; 1999 Jun; 16(6):1189-203. PubMed ID: 10447203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into the role of the acid-alcohol pair of residues required for dioxygen activation in cytochrome P450 enzymes.
    Coleman T; Stok JE; Podgorski MN; Bruning JB; De Voss JJ; Bell SG
    J Biol Inorg Chem; 2020 Jun; 25(4):583-596. PubMed ID: 32248305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron shuttle between membrane-bound cytochrome P450 3A4 and b5 rules uncoupling mechanisms.
    Perret A; Pompon D
    Biochemistry; 1998 Aug; 37(33):11412-24. PubMed ID: 9708976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How similar are P450s and what can their differences teach us?
    Graham SE; Peterson JA
    Arch Biochem Biophys; 1999 Sep; 369(1):24-9. PubMed ID: 10462437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of cytochromes P450: a comparative analysis of three crystal structures.
    Hasemann CA; Kurumbail RG; Boddupalli SS; Peterson JA; Deisenhofer J
    Structure; 1995 Jan; 3(1):41-62. PubMed ID: 7743131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: a new mechanism of proton transfer.
    Zhao B; Guengerich FP; Voehler M; Waterman MR
    J Biol Chem; 2005 Dec; 280(51):42188-97. PubMed ID: 16239228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM.
    Sono M; Perera R; Jin S; Makris TM; Sligar SG; Bryson TA; Dawson JH
    Arch Biochem Biophys; 2005 Apr; 436(1):40-9. PubMed ID: 15752707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.