These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2703 related articles for article (PubMed ID: 23587118)

  • 1. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.
    Luo R; Liu B; Xie Y; Li Z; Huang W; Yuan J; He G; Chen Y; Pan Q; Liu Y; Tang J; Wu G; Zhang H; Shi Y; Liu Y; Yu C; Wang B; Lu Y; Han C; Cheung DW; Yiu SM; Peng S; Xiaoqian Z; Liu G; Liao X; Li Y; Yang H; Wang J; Lam TW; Wang J
    Gigascience; 2012 Dec; 1(1):18. PubMed ID: 23587118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallelized short read assembly of large genomes using de Bruijn graphs.
    Liu Y; Schmidt B; Maskell DL
    BMC Bioinformatics; 2011 Aug; 12():354. PubMed ID: 21867511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembler for de novo assembly of large genomes.
    Chu TC; Lu CH; Liu T; Lee GC; Li WH; Shih AC
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):E3417-24. PubMed ID: 23966565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking and Assessment of Eight
    Gupta AK; Kumar M
    OMICS; 2022 Jul; 26(7):372-381. PubMed ID: 35759429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Software for pre-processing Illumina next-generation sequencing short read sequences.
    Chen C; Khaleel SS; Huang H; Wu CH
    Source Code Biol Med; 2014; 9():8. PubMed ID: 24955109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.
    Zhang W; Chen J; Yang Y; Tang Y; Shang J; Shen B
    PLoS One; 2011 Mar; 6(3):e17915. PubMed ID: 21423806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B-assembler: a circular bacterial genome assembler.
    Huang F; Xiao L; Gao M; Vallely EJ; Dybvig K; Atkinson TP; Waites KB; Chong Z
    BMC Genomics; 2022 May; 23(Suppl 4):361. PubMed ID: 35546658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies.
    Wetzel J; Kingsford C; Pop M
    BMC Bioinformatics; 2011 Apr; 12():95. PubMed ID: 21486487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale de novo assembly using ALGA.
    Swat S; Laskowski A; Badura J; Frohmberg W; Wojciechowski P; Swiercz A; Kasprzak M; Blazewicz J
    Bioinformatics; 2021 Jul; 37(12):1644-1651. PubMed ID: 33471088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A de novo next generation genomic sequence assembler based on string graph and MapReduce cloud computing framework.
    Chang YJ; Chen CC; Chen CL; Ho JM
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S28. PubMed ID: 23282094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads.
    El-Metwally S; Zakaria M; Hamza T
    Bioinformatics; 2016 Nov; 32(21):3215-3223. PubMed ID: 27412092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of nine popular de novo assemblers in microbial genome assembly.
    Forouzan E; Maleki MSM; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2017 Dec; 143():32-37. PubMed ID: 28939423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 136.