BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23587307)

  • 1. Construction and analysis of the protein-protein interaction network related to essential hypertension.
    Ran J; Li H; Fu J; Liu L; Xing Y; Li X; Shen H; Chen Y; Jiang X; Li Y; Li H
    BMC Syst Biol; 2013 Apr; 7():32. PubMed ID: 23587307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and analysis of protein-protein interaction network correlated with ankylosing spondylitis.
    Kanwal A; Fazal S
    Gene; 2018 Jan; 638():41-51. PubMed ID: 28966133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.
    Li M; Lu Y; Wang J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):372-83. PubMed ID: 26357224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer.
    Chen C; Shen H; Zhang LG; Liu J; Cao XG; Yao AL; Kang SS; Gao WX; Han H; Cao FH; Li ZG
    Int J Mol Med; 2016 Jun; 37(6):1576-86. PubMed ID: 27121963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and Analysis of Protein-Protein Interaction Network of Heroin Use Disorder.
    Chen SJ; Liao DL; Chen CH; Wang TY; Chen KC
    Sci Rep; 2019 Mar; 9(1):4980. PubMed ID: 30899073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a Comprehensive Protein-Protein Interaction Map for Vitiligo Disease to Identify Key Regulatory Elements: A Systemic Approach.
    Malhotra AG; Jha M; Singh S; Pandey KM
    Interdiscip Sci; 2018 Sep; 10(3):500-514. PubMed ID: 28290051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-protein interaction network-based integration of GWAS and functional data for blood pressure regulation analysis.
    Tsare EG; Klapa MI; Moschonas NK
    Hum Genomics; 2024 Feb; 18(1):15. PubMed ID: 38326862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and analysis of a protein-protein interaction network related to self-renewal of mouse spermatogonial stem cells.
    Xie W; Sun J; Wu J
    Mol Biosyst; 2015 Mar; 11(3):835-43. PubMed ID: 25566695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide dysfunction in vascular endothelium and platelets: role in essential hypertension.
    Gkaliagkousi E; Douma S; Zamboulis C; Ferro A
    J Hypertens; 2009 Dec; 27(12):2310-20. PubMed ID: 19838132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. United Complex Centrality for Identification of Essential Proteins from PPI Networks.
    Li M; Lu Y; Niu Z; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):370-380. PubMed ID: 28368815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins.
    Li G; Li M; Wang J; Li Y; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1451-1458. PubMed ID: 30596582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network simulation reveals significant contribution of network motifs to the age-dependency of yeast protein-protein interaction networks.
    Liang C; Luo J; Song D
    Mol Biosyst; 2014 Jul; 10(9):2277-88. PubMed ID: 24964354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of Protein Interaction Networks Using Computational Tools.
    Dong S; Provart NJ
    Methods Mol Biol; 2018; 1794():97-117. PubMed ID: 29855953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk.
    Gupta A; Mohanty P; Bhatnagar S
    J Recept Signal Transduct Res; 2015 Apr; 35(2):149-64. PubMed ID: 25055025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of drug target candidates of the swine pathogen Actinobacillus pleuropneumoniae by construction of protein-protein interaction network.
    Li S; Su Z; Zhang C; Xu Z; Chang X; Zhu J; Xiao R; Li L; Zhou R
    Genes Genomics; 2018 Aug; 40(8):847-856. PubMed ID: 30047117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks.
    Tang Y; Li M; Wang J; Pan Y; Wu FX
    Biosystems; 2015 Jan; 127():67-72. PubMed ID: 25451770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dominating biological networks.
    Milenković T; Memišević V; Bonato A; Pržulj N
    PLoS One; 2011; 6(8):e23016. PubMed ID: 21887225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network analysis and cross species comparison of protein-protein interaction networks of human, mouse and rat cytochrome P450 proteins that degrade xenobiotics.
    Karthikeyan BS; Akbarsha MA; Parthasarathy S
    Mol Biosyst; 2016 Jun; 12(7):2119-34. PubMed ID: 27194593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.