These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 23587523)
1. Engineering alternate cooperative-communications in the lactose repressor protein scaffold. Meyer S; Ramot R; Kishore Inampudi K; Luo B; Lin C; Amere S; Wilson CJ Protein Eng Des Sel; 2013 Jun; 26(6):433-43. PubMed ID: 23587523 [TBL] [Abstract][Full Text] [Related]
2. Fourteen Ways to Reroute Cooperative Communication in the Lactose Repressor: Engineering Regulatory Proteins with Alternate Repressive Functions. Richards DH; Meyer S; Wilson CJ ACS Synth Biol; 2017 Jan; 6(1):6-12. PubMed ID: 27598336 [TBL] [Abstract][Full Text] [Related]
3. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. Xu J; Liu S; Chen M; Ma J; Matthews KS Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765 [TBL] [Abstract][Full Text] [Related]
4. Evolving Lac repressor for enhanced inducibility. Satya Lakshmi O; Rao NM Protein Eng Des Sel; 2009 Feb; 22(2):53-8. PubMed ID: 19029094 [TBL] [Abstract][Full Text] [Related]
5. A single mutation in the core domain of the lac repressor reduces leakiness. Gatti-Lafranconi P; Dijkman WP; Devenish SR; Hollfelder F Microb Cell Fact; 2013 Jul; 12():67. PubMed ID: 23834731 [TBL] [Abstract][Full Text] [Related]
6. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation. Xu J; Liu KW; Matthews KS; Biswal SL Langmuir; 2011 Apr; 27(8):4900-5. PubMed ID: 21410208 [TBL] [Abstract][Full Text] [Related]
7. LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET. Goodson KA; Wang Z; Haeusler AR; Kahn JD; English DS J Phys Chem B; 2013 Apr; 117(16):4713-22. PubMed ID: 23406418 [TBL] [Abstract][Full Text] [Related]
8. Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor. Xu J; Matthews KS Biochemistry; 2009 Jun; 48(22):4988-98. PubMed ID: 19368358 [TBL] [Abstract][Full Text] [Related]
9. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors. Horton N; Lewis M; Lu P J Mol Biol; 1997 Jan; 265(1):1-7. PubMed ID: 8995519 [TBL] [Abstract][Full Text] [Related]
10. Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication. Zhan H; Camargo M; Matthews KS Biochemistry; 2010 Oct; 49(39):8636-45. PubMed ID: 20804152 [TBL] [Abstract][Full Text] [Related]
11. Dynamics-based protein network features accurately discriminate neutral and rheostat positions. Campitelli P; Ross D; Swint-Kruse L; Ozkan SB Biophys J; 2024 Oct; 123(20):3612-3626. PubMed ID: 39277794 [TBL] [Abstract][Full Text] [Related]
12. Strengthening the dimerisation interface of Lac repressor increases its thermostability by 40 deg. C. Gerk LP; Leven O; Müller-Hill B J Mol Biol; 2000 Jun; 299(3):805-12. PubMed ID: 10835285 [TBL] [Abstract][Full Text] [Related]
13. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein. Taraban M; Zhan H; Whitten AE; Langley DB; Matthews KS; Swint-Kruse L; Trewhella J J Mol Biol; 2008 Feb; 376(2):466-81. PubMed ID: 18164724 [TBL] [Abstract][Full Text] [Related]
14. OptoLacI: optogenetically engineered lactose operon repressor LacI responsive to light instead of IPTG. Liu M; Li Z; Huang J; Yan J; Zhao G; Zhang Y Nucleic Acids Res; 2024 Jul; 52(13):8003-8016. PubMed ID: 38860425 [TBL] [Abstract][Full Text] [Related]
15. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence. Tungtur S; Egan SM; Swint-Kruse L Proteins; 2007 Jul; 68(1):375-88. PubMed ID: 17436321 [TBL] [Abstract][Full Text] [Related]
16. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation. Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913 [TBL] [Abstract][Full Text] [Related]
17. Solution NMR investigation of the response of the lactose repressor core domain dimer to hydrostatic pressure. Fuglestad B; Stetz MA; Belnavis Z; Wand AJ Biophys Chem; 2017 Dec; 231():39-44. PubMed ID: 28249763 [TBL] [Abstract][Full Text] [Related]
18. A closer view of the conformation of the Lac repressor bound to operator. Bell CE; Lewis M Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279 [TBL] [Abstract][Full Text] [Related]
19. A Biosensor Strategy for E. coli Based on Ligand-Dependent Stabilization. Brandsen BM; Mattheisen JM; Noel T; Fields S ACS Synth Biol; 2018 Sep; 7(9):1990-1999. PubMed ID: 30064218 [TBL] [Abstract][Full Text] [Related]
20. Tradeoffs and optimality in the evolution of gene regulation. Poelwijk FJ; de Vos MG; Tans SJ Cell; 2011 Aug; 146(3):462-70. PubMed ID: 21802129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]