BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 23587792)

  • 1. Thiol-chromene click chemistry: a coumarin-based derivative and its use as regenerable thiol probe and in bioimaging applications.
    Yang Y; Huo F; Yin C; Zheng A; Chao J; Li Y; Nie Z; Martínez-Máñez R; Liu D
    Biosens Bioelectron; 2013 Sep; 47():300-6. PubMed ID: 23587792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A coumarin-based fluorescent probe for biological thiols and its application for living cell imaging.
    Long L; Zhou L; Wang L; Meng S; Gong A; Du F; Zhang C
    Org Biomol Chem; 2013 Dec; 11(47):8214-20. PubMed ID: 24166284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric detection of thiols using a chromene molecule.
    Huo FJ; Sun YQ; Su J; Chao JB; Zhi HJ; Yin CX
    Org Lett; 2009 Nov; 11(21):4918-21. PubMed ID: 19788282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native chemical ligation combined with spirocyclization of benzopyrylium dyes for the ratiometric and selective fluorescence detection of cysteine and homocysteine.
    Lv H; Yang XF; Zhong Y; Guo Y; Li Z; Li H
    Anal Chem; 2014 Feb; 86(3):1800-7. PubMed ID: 24410246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorescence turn-on probe for cysteine and homocysteine based on thiol-triggered benzothiazolidine ring formation.
    Liu SR; Chang CY; Wu SP
    Anal Chim Acta; 2014 Nov; 849():64-9. PubMed ID: 25300219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coumarin-based thiol chemosensor: synthesis, turn-on mechanism, and its biological application.
    Jung HS; Ko KC; Kim GH; Lee AR; Na YC; Kang C; Lee JY; Kim JS
    Org Lett; 2011 Mar; 13(6):1498-501. PubMed ID: 21323377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent Off-On characteristics.
    Kand D; Kalle AM; Talukdar P
    Org Biomol Chem; 2013 Feb; 11(10):1691-701. PubMed ID: 23364761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent coumarin-based probe for cysteine and homocysteine with live cell application.
    Wei LF; Thirumalaivasan N; Liao YC; Wu SP
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():204-208. PubMed ID: 28454072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo.
    Chen W; Luo H; Liu X; Foley JW; Song X
    Anal Chem; 2016 Apr; 88(7):3638-46. PubMed ID: 26911923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coumarin-based fluorescent turn-on probe for detection of biothiols in vitro.
    Liu M; Jiang Q; Lu Z; Huang Y; Tan Y; Jiang Q
    Luminescence; 2015 Dec; 30(8):1395-402. PubMed ID: 25924593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a selective fluorescent probe for GSH based on a chloro-functionalized coumarin-enone dye platform.
    Liu Y; Lv X; Liu J; Sun YQ; Guo W
    Chemistry; 2015 Mar; 21(12):4747-54. PubMed ID: 25652957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression.
    Kwon H; Lee K; Kim HJ
    Chem Commun (Camb); 2011 Feb; 47(6):1773-5. PubMed ID: 21127785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cysteine-selective fluorescent probe for the cellular detection of cysteine.
    Jung HS; Han JH; Pradhan T; Kim S; Lee SW; Sessler JL; Kim TW; Kang C; Kim JS
    Biomaterials; 2012 Jan; 33(3):945-53. PubMed ID: 22048010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine.
    He L; Xu Q; Liu Y; Wei H; Tang Y; Lin W
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12809-13. PubMed ID: 26016515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Synthesis of a Coumarin Carbohydrazide Dinuclear Copper Complex Based Fluorescence Probe and Its Detection of Thiols.
    He G; Li J; Yang L; Hou C; Ni T; Yang Z; Qian X; Li C
    PLoS One; 2016; 11(2):e0148026. PubMed ID: 26871436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and application of a "turn on" fluorescent probe for glutathione based on a copper complex of coumarin hydrazide Schiff base derivative.
    He G; Hua X; Yang N; Li L; Xu J; Yang L; Wang Q; Ji L
    Bioorg Chem; 2019 Oct; 91():103176. PubMed ID: 31404797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol "Click" Chromene Ring Opening and Subsequent Cascade Nucleophilic Cyclization NIR Fluorescence Imaging Reveal High Levels of Thiol in Drug-Resistant Cells.
    Ma K; Zhao L; Yue Y; Huo F; Chao J; Yin C
    Anal Chem; 2020 Dec; 92(24):15936-15942. PubMed ID: 33226207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Emission Channels for Simultaneous Sensing of Cysteine and Homocysteine in Living Cells.
    Li Y; Liu W; Zhang H; Wang M; Wu J; Ge J; Wang P
    Chem Asian J; 2017 Aug; 12(16):2098-2103. PubMed ID: 28556589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modulated cysteine-selective fluorescent probe.
    Jung HS; Pradhan T; Han JH; Heo KJ; Lee JH; Kang C; Kim JS
    Biomaterials; 2012 Nov; 33(33):8495-502. PubMed ID: 22906610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions.
    Li Y; Liu W; Zhang P; Zhang H; Wu J; Ge J; Wang P
    Biosens Bioelectron; 2017 Apr; 90():117-124. PubMed ID: 27886598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.