BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23587819)

  • 1. Oxygen transfer and evolution in microalgal culture in open raceways.
    Mendoza JL; Granados MR; de Godos I; Acién FG; Molina E; Heaven S; Banks CJ
    Bioresour Technol; 2013 Jun; 137():188-95. PubMed ID: 23587819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of CO2 fixation by microalgae in a closed raceway pond.
    Li S; Luo S; Guo R
    Bioresour Technol; 2013 May; 136():267-72. PubMed ID: 23567690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases.
    de Godos I; Mendoza JL; Acién FG; Molina E; Banks CJ; Heaven S; Rogalla F
    Bioresour Technol; 2014 Feb; 153():307-14. PubMed ID: 24374031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving growth rate of microalgae in a 1191m(2) raceway pond to fix CO2 from flue gas in a coal-fired power plant.
    Cheng J; Yang Z; Huang Y; Huang L; Hu L; Xu D; Zhou J; Cen K
    Bioresour Technol; 2015 Aug; 190():235-41. PubMed ID: 25958147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors.
    Hulatt CJ; Thomas DN
    Bioresour Technol; 2011 May; 102(10):5775-87. PubMed ID: 21376576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae cultivation in a novel top-lit gas-lift open bioreactor.
    Seyed Hosseini N; Shang H; Ross GM; Scott JA
    Bioresour Technol; 2015 Sep; 192():432-40. PubMed ID: 26072276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling algal growth in bubble columns under sparging with CO2-enriched air.
    Pegallapati AK; Nirmalakhandan N
    Bioresour Technol; 2012 Nov; 124():137-45. PubMed ID: 22989642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling microalgal growth in an airlift-driven raceway reactor.
    Ketheesan B; Nirmalakhandan N
    Bioresour Technol; 2013 May; 136():689-96. PubMed ID: 23603218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity.
    Hall DO; Fernández FG; Guerrero EC; Rao KK; Grima EM
    Biotechnol Bioeng; 2003 Apr; 82(1):62-73. PubMed ID: 12569625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer.
    Putt R; Singh M; Chinnasamy S; Das KC
    Bioresour Technol; 2011 Feb; 102(3):3240-5. PubMed ID: 21123050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
    Cheah WY; Show PL; Chang JS; Ling TC; Juan JC
    Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An effective device for gas-liquid oxygen removal in enclosed microalgae culture.
    Su Z; Kang R; Shi S; Cong W; Cai Z
    Appl Biochem Biotechnol; 2010 Jan; 160(2):428-37. PubMed ID: 18779934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas].
    Yang X; Xiang W; Zhang F; Wu H; He H; Fan J
    Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):370-81. PubMed ID: 23789278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude.
    Hulatt CJ; Thomas DN
    Bioresour Technol; 2011 Jun; 102(12):6687-95. PubMed ID: 21511466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimize flue gas settings to promote microalgae growth in photobioreactors via computer simulations.
    He L; Chen AB; Yu Y; Kucera L; Tang Y
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24121788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [CO2 sequestration coupled with industrial cultivation of microalgae].
    Zhang F; Xiang W; Xiao B; Chen P
    Wei Sheng Wu Xue Bao; 2012 Nov; 52(11):1378-84. PubMed ID: 23383509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Progress in biofixation of CO2 from combustion flue gas by microalgae].
    Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs.
    Douskova I; Doucha J; Livansky K; Machat J; Novak P; Umysova D; Zachleder V; Vitova M
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):179-85. PubMed ID: 19096837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.