These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 23587931)
1. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Yang F; Kubota F; Baba Y; Kamiya N; Goto M J Hazard Mater; 2013 Jun; 254-255():79-88. PubMed ID: 23587931 [TBL] [Abstract][Full Text] [Related]
2. Screening and selection of technologically applicable microorganisms for recovery of rare earth elements from fluorescent powder. Hopfe S; Konsulke S; Barthen R; Lehmann F; Kutschke S; Pollmann K Waste Manag; 2018 Sep; 79():554-563. PubMed ID: 30343787 [TBL] [Abstract][Full Text] [Related]
3. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution. Liu H; Zhang S; Pan D; Tian J; Yang M; Wu M; Volinsky AA J Hazard Mater; 2014 May; 272():96-101. PubMed ID: 24681591 [TBL] [Abstract][Full Text] [Related]
4. Uphill transport of rare-earth metals through a highly stable supported liquid membrane based on an ionic liquid. Kubota F; Shimobori Y; Koyanagi Y; Shimojo K; Kamiya N; Goto M Anal Sci; 2010; 26(3):289-90. PubMed ID: 20215675 [TBL] [Abstract][Full Text] [Related]
5. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents. Pavón S; Fortuny A; Coll MT; Sastre AM Waste Manag; 2018 Dec; 82():241-248. PubMed ID: 30509586 [TBL] [Abstract][Full Text] [Related]
6. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor. Hu AH; Kuo CH; Huang LH; Su CC Waste Manag; 2017 Feb; 60():765-774. PubMed ID: 27810122 [TBL] [Abstract][Full Text] [Related]
7. Rare earth element recycling from waste nickel-metal hydride batteries. Yang X; Zhang J; Fang X J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667 [TBL] [Abstract][Full Text] [Related]
8. Extraction behavior and selective separation of lead(II) using N,N-dioctyldiglycol amic acid. Shimojo K; Nakai A; Okamura H; Ohashi A; Naganawa H Anal Sci; 2013; 29(1):147-50. PubMed ID: 23303101 [TBL] [Abstract][Full Text] [Related]
9. Application of a functionalized ionic liquid extractant tributylmethylammonium dibutyldiglycolamate ([A336][BDGA]) in light rare earth extraction and separation. Qiu L; Pan Y; Zhang W; Gong A PLoS One; 2018; 13(8):e0201405. PubMed ID: 30138315 [TBL] [Abstract][Full Text] [Related]
10. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis. Innocenzi V; Ippolito NM; De Michelis I; Medici F; Vegliò F J Environ Manage; 2016 Dec; 184(Pt 3):552-559. PubMed ID: 27789090 [TBL] [Abstract][Full Text] [Related]
11. Extraction of rare earth Eu from waste blue phosphor strengthened by microwave alkali roasting. Liu C; Luo W; Li Y; Wang Z; Xu S; Wang X J Environ Manage; 2024 Jun; 362():121303. PubMed ID: 38824885 [TBL] [Abstract][Full Text] [Related]
12. Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid-choline chloride. Pateli IM; Abbott AP; Binnemans K; Rodriguez Rodriguez N RSC Adv; 2020 Aug; 10(48):28879-28890. PubMed ID: 35520061 [TBL] [Abstract][Full Text] [Related]
13. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries. Meshram P; Pandey BD; Mankhand TR Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588 [TBL] [Abstract][Full Text] [Related]
14. Solvent extraction of rare-earth ions based on functionalized ionic liquids. Sun X; Luo H; Dai S Talanta; 2012 Feb; 90():132-7. PubMed ID: 22340127 [TBL] [Abstract][Full Text] [Related]
15. Liquid-liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid. Rout A; Binnemans K Dalton Trans; 2014 Jan; 43(4):1862-72. PubMed ID: 24257814 [TBL] [Abstract][Full Text] [Related]
16. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder with organic and inorganic ligands. Alvarado-Hernández L; Lapidus GT; González F Waste Manag; 2019 Jul; 95():53-58. PubMed ID: 31351639 [TBL] [Abstract][Full Text] [Related]
17. Rare earth elements recovery from secondary wastes by solid-state chlorination and selective organic leaching. Pavón S; Lorenz T; Fortuny A; Sastre AM; Bertau M Waste Manag; 2021 Mar; 122():55-63. PubMed ID: 33486303 [TBL] [Abstract][Full Text] [Related]
18. Homogeneous liquid-liquid extraction of rare earths with the betaine-betainium bis(trifluoromethylsulfonyl)imide ionic liquid system. Vander Hoogerstraete T; Onghena B; Binnemans K Int J Mol Sci; 2013 Oct; 14(11):21353-77. PubMed ID: 24169434 [TBL] [Abstract][Full Text] [Related]
19. Estimation of retorted phosphor powder from spent fluorescent lamps by thermal process. Park HS; Rhee SW Waste Manag; 2016 Apr; 50():257-63. PubMed ID: 26882866 [TBL] [Abstract][Full Text] [Related]
20. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy. Ahn NK; Shim HW; Kim DW; Swain B Waste Manag; 2020 Mar; 104():254-261. PubMed ID: 31991266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]