These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23588046)

  • 1. Stochastic parametrizations and model uncertainty in the Lorenz '96 system.
    Arnold HM; Moroz IM; Palmer TN
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20110479. PubMed ID: 23588046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models.
    Shutts G; Pallarès AC
    Philos Trans A Math Phys Eng Sci; 2014 Jun; 372(2018):20130284. PubMed ID: 24842034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noodles: a tool for visualization of numerical weather model ensemble uncertainty.
    Sanyal J; Zhang S; Dyer J; Mercer A; Amburn P; Moorhead RJ
    IEEE Trans Vis Comput Graph; 2010; 16(6):1421-30. PubMed ID: 20975183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of stochastic parametrization approaches in a single-column model.
    Ball MA; Plant RS
    Philos Trans A Math Phys Eng Sci; 2008 Jul; 366(1875):2605-23. PubMed ID: 18445566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system.
    Weisheimer A; Corti S; Palmer T; Vitart F
    Philos Trans A Math Phys Eng Sci; 2014 Jun; 372(2018):20130290. PubMed ID: 24842026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stochastic parametrization on conceptual climate models.
    Wilks DS
    Philos Trans A Math Phys Eng Sci; 2008 Jul; 366(1875):2477-90. PubMed ID: 18445573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-based stochastic subgrid-scale parametrization: an approach using cluster-weighted modelling.
    Kwasniok F
    Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1962):1061-86. PubMed ID: 22291223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative emulation of weather forecast ensembles with diffusion models.
    Li L; Carver R; Lopez-Gomez I; Sha F; Anderson J
    Sci Adv; 2024 Mar; 10(13):eadk4489. PubMed ID: 38552014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal to annual ocean forecasting skill and the role of model and observational uncertainty.
    Juricke S; MacLeod D; Weisheimer A; Zanna L; Palmer TN
    Q J R Meteorol Soc; 2018 Jul; 144(715):1947-1964. PubMed ID: 31031424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On quantifying the climate of the nonautonomous Lorenz-63 model.
    Daron JD; Stainforth DA
    Chaos; 2015 Apr; 25(4):043103. PubMed ID: 25933651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining data assimilation and machine learning to infer unresolved scale parametrization.
    Brajard J; Carrassi A; Bocquet M; Bertino L
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2194):20200086. PubMed ID: 33583267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for post-processing ensemble weather forecasts.
    Grönquist P; Yao C; Ben-Nun T; Dryden N; Dueben P; Li S; Hoefler T
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2194):20200092. PubMed ID: 33583263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic and mesoscopic models for tropical convection.
    Majda AJ; Khouider B
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1123-8. PubMed ID: 11830655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles.
    Thomson MC; Doblas-Reyes FJ; Mason SJ; Hagedorn R; Connor SJ; Phindela T; Morse AP; Palmer TN
    Nature; 2006 Feb; 439(7076):576-9. PubMed ID: 16452977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the risk of extreme seasonal precipitation events in a changing climate.
    Palmer TN; Räisänen J
    Nature; 2002 Jan; 415(6871):512-4. PubMed ID: 11823856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles.
    Murphy JM; Booth BB; Collins M; Harris GR; Sexton DM; Webb MJ
    Philos Trans A Math Phys Eng Sci; 2007 Aug; 365(1857):1993-2028. PubMed ID: 17569653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric science. Weather forecasting with ensemble methods.
    Gneiting T; Raftery AE
    Science; 2005 Oct; 310(5746):248-9. PubMed ID: 16224011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model.
    Berner J; Doblas-Reyes FJ; Palmer TN; Shutts G; Weisheimer A
    Philos Trans A Math Phys Eng Sci; 2008 Jul; 366(1875):2561-79. PubMed ID: 18445570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model complexity versus ensemble size: allocating resources for climate prediction.
    Ferro CA; Jupp TE; Lambert FH; Huntingford C; Cox PM
    Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1962):1087-99. PubMed ID: 22291224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal stochastic forcing effects in an ensemble consisting of arrays of diffusively coupled Lorenz cells.
    Lorenzo MN; Santos MA; Pérez-Muñuzuri V
    Chaos; 2003 Sep; 13(3):913-20. PubMed ID: 12946183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.