BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23588684)

  • 1. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria.
    Bouzat JL; Hoostal MJ
    J Mol Evol; 2013 May; 76(5):267-79. PubMed ID: 23588684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis.
    Cánovas D; Cases I; de Lorenzo V
    Environ Microbiol; 2003 Dec; 5(12):1242-56. PubMed ID: 14641571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans.
    Legatzki A; Franke S; Lucke S; Hoffmann T; Anton A; Neumann D; Nies DH
    Biodegradation; 2003 Apr; 14(2):153-68. PubMed ID: 12877469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcNp in Ralstonia metallidurans.
    Grosse C; Anton A; Hoffmann T; Franke S; Schleuder G; Nies DH
    Arch Microbiol; 2004 Oct; 182(2-3):109-18. PubMed ID: 15340798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon.
    Osborn AM; Bruce KD; Strike P; Ritchie DA
    FEMS Microbiol Rev; 1997 Apr; 19(4):239-62. PubMed ID: 9167257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple signaling systems target a core set of transition metal homeostasis genes using similar binding motifs.
    Garber ME; Rajeev L; Kazakov AE; Trinh J; Masuno D; Thompson MG; Kaplan N; Luk J; Novichkov PS; Mukhopadhyay A
    Mol Microbiol; 2018 Mar; 107(6):704-717. PubMed ID: 29341298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Newer systems for bacterial resistances to toxic heavy metals.
    Silver S; Ji G
    Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):107-13. PubMed ID: 7843081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium-regulated gene fusions in Pseudomonas fluorescens.
    Rossbach S; Kukuk ML; Wilson TL; Feng SF; Pearson MM; Fisher MA
    Environ Microbiol; 2000 Aug; 2(4):373-82. PubMed ID: 11234925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel
    Linsky M; Vitkin Y; Segal G
    mBio; 2020 Jan; 11(1):. PubMed ID: 31992628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cupriavidus metallidurans: evolution of a metal-resistant bacterium.
    von Rozycki T; Nies DH
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):115-39. PubMed ID: 18830684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins.
    Makarova KS; Ponomarev VA; Koonin EV
    Genome Biol; 2001; 2(9):RESEARCH 0033. PubMed ID: 11574053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli.
    Gupta SD; Wu HC; Rick PD
    J Bacteriol; 1997 Aug; 179(16):4977-84. PubMed ID: 9260936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic pipeline for classifying bacterial operons reveals the evolutionary landscape of biofilm machineries.
    Bundalovic-Torma C; Whitfield GB; Marmont LS; Howell PL; Parkinson J
    PLoS Comput Biol; 2020 Apr; 16(4):e1007721. PubMed ID: 32236097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae.
    Mills SD; Jasalavich CA; Cooksey DA
    J Bacteriol; 1993 Mar; 175(6):1656-64. PubMed ID: 8449873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the copper-sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering.
    Kang Y; Lee W; Kim S; Jang G; Kim BG; Yoon Y
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1513-1521. PubMed ID: 29243083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marinobacter adhaerens HP15 harbors two CzcCBA efflux pumps involved in zinc detoxification.
    Stahl A; Pletzer D; Mehmood A; Ullrich MS
    Antonie Van Leeuwenhoek; 2015 Sep; 108(3):649-58. PubMed ID: 26122890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heavy metal tolerant soil bacterium Achromobacter sp. AO22 contains a unique copper homeostasis locus and two mer operons.
    Ng SP; Palombo EA; Bhave M
    J Microbiol Biotechnol; 2012 Jun; 22(6):742-53. PubMed ID: 22573150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization influencing metal resistance in the Cupriavidus/Ralstonia genomes.
    Chakraborti P; Banerjee R; Roy A; Mandal S; Mukhopadhyay S
    J Biomol Struct Dyn; 2015; 33(11):2330-46. PubMed ID: 26156561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ.
    Omelchenko MV; Makarova KS; Wolf YI; Rogozin IB; Koonin EV
    Genome Biol; 2003; 4(9):R55. PubMed ID: 12952534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess.
    Pontel LB; Scampoli NL; Porwollik S; Checa SK; McClelland M; Soncini FC
    Microbiology (Reading); 2014 Aug; 160(Pt 8):1659-1669. PubMed ID: 24858080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.