These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 23588684)
1. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria. Bouzat JL; Hoostal MJ J Mol Evol; 2013 May; 76(5):267-79. PubMed ID: 23588684 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Cánovas D; Cases I; de Lorenzo V Environ Microbiol; 2003 Dec; 5(12):1242-56. PubMed ID: 14641571 [TBL] [Abstract][Full Text] [Related]
3. First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Legatzki A; Franke S; Lucke S; Hoffmann T; Anton A; Neumann D; Nies DH Biodegradation; 2003 Apr; 14(2):153-68. PubMed ID: 12877469 [TBL] [Abstract][Full Text] [Related]
4. Early transcriptional changes of heavy metal resistance and multiple efflux genes in Xanthomonas campestris pv. campestris under copper and heavy metal ion stress. Ramnarine SDB; Ali O; Jayaraman J; Ramsubhag A BMC Microbiol; 2024 Mar; 24(1):81. PubMed ID: 38461228 [TBL] [Abstract][Full Text] [Related]
5. Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcNp in Ralstonia metallidurans. Grosse C; Anton A; Hoffmann T; Franke S; Schleuder G; Nies DH Arch Microbiol; 2004 Oct; 182(2-3):109-18. PubMed ID: 15340798 [TBL] [Abstract][Full Text] [Related]
6. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. Osborn AM; Bruce KD; Strike P; Ritchie DA FEMS Microbiol Rev; 1997 Apr; 19(4):239-62. PubMed ID: 9167257 [TBL] [Abstract][Full Text] [Related]
7. Multiple signaling systems target a core set of transition metal homeostasis genes using similar binding motifs. Garber ME; Rajeev L; Kazakov AE; Trinh J; Masuno D; Thompson MG; Kaplan N; Luk J; Novichkov PS; Mukhopadhyay A Mol Microbiol; 2018 Mar; 107(6):704-717. PubMed ID: 29341298 [TBL] [Abstract][Full Text] [Related]
8. Newer systems for bacterial resistances to toxic heavy metals. Silver S; Ji G Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):107-13. PubMed ID: 7843081 [TBL] [Abstract][Full Text] [Related]
9. Interplay between Two-Component Regulatory Systems Is Involved in Control of Cupriavidus metallidurans Metal Resistance Genes. Große C; Scherer J; Schleuder G; Nies DH J Bacteriol; 2023 Apr; 205(4):e0034322. PubMed ID: 36892288 [TBL] [Abstract][Full Text] [Related]
10. Cadmium-regulated gene fusions in Pseudomonas fluorescens. Rossbach S; Kukuk ML; Wilson TL; Feng SF; Pearson MM; Fisher MA Environ Microbiol; 2000 Aug; 2(4):373-82. PubMed ID: 11234925 [TBL] [Abstract][Full Text] [Related]
11. A Novel Linsky M; Vitkin Y; Segal G mBio; 2020 Jan; 11(1):. PubMed ID: 31992628 [TBL] [Abstract][Full Text] [Related]
12. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. von Rozycki T; Nies DH Antonie Van Leeuwenhoek; 2009 Aug; 96(2):115-39. PubMed ID: 18830684 [TBL] [Abstract][Full Text] [Related]
13. Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Makarova KS; Ponomarev VA; Koonin EV Genome Biol; 2001; 2(9):RESEARCH 0033. PubMed ID: 11574053 [TBL] [Abstract][Full Text] [Related]
14. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. Gupta SD; Wu HC; Rick PD J Bacteriol; 1997 Aug; 179(16):4977-84. PubMed ID: 9260936 [TBL] [Abstract][Full Text] [Related]
15. A systematic pipeline for classifying bacterial operons reveals the evolutionary landscape of biofilm machineries. Bundalovic-Torma C; Whitfield GB; Marmont LS; Howell PL; Parkinson J PLoS Comput Biol; 2020 Apr; 16(4):e1007721. PubMed ID: 32236097 [TBL] [Abstract][Full Text] [Related]
16. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. Mills SD; Jasalavich CA; Cooksey DA J Bacteriol; 1993 Mar; 175(6):1656-64. PubMed ID: 8449873 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the copper-sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering. Kang Y; Lee W; Kim S; Jang G; Kim BG; Yoon Y Appl Microbiol Biotechnol; 2018 Feb; 102(3):1513-1521. PubMed ID: 29243083 [TBL] [Abstract][Full Text] [Related]
18. Marinobacter adhaerens HP15 harbors two CzcCBA efflux pumps involved in zinc detoxification. Stahl A; Pletzer D; Mehmood A; Ullrich MS Antonie Van Leeuwenhoek; 2015 Sep; 108(3):649-58. PubMed ID: 26122890 [TBL] [Abstract][Full Text] [Related]
19. The heavy metal tolerant soil bacterium Achromobacter sp. AO22 contains a unique copper homeostasis locus and two mer operons. Ng SP; Palombo EA; Bhave M J Microbiol Biotechnol; 2012 Jun; 22(6):742-53. PubMed ID: 22573150 [TBL] [Abstract][Full Text] [Related]
20. Molecular characterization influencing metal resistance in the Cupriavidus/Ralstonia genomes. Chakraborti P; Banerjee R; Roy A; Mandal S; Mukhopadhyay S J Biomol Struct Dyn; 2015; 33(11):2330-46. PubMed ID: 26156561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]