BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 2358869)

  • 21. Auditory nerve representation of vowels in background noise.
    Sachs MB; Voigt HF; Young ED
    J Neurophysiol; 1983 Jul; 50(1):27-45. PubMed ID: 6875649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency.
    Joris PX; Carney LH; Smith PH; Yin TC
    J Neurophysiol; 1994 Mar; 71(3):1022-36. PubMed ID: 8201399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement and distortion in the temporal representation of sounds in the ventral cochlear nucleus of chinchillas and cats.
    Recio-Spinoso A
    PLoS One; 2012; 7(9):e44286. PubMed ID: 23028514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons.
    Palmer AR; Winter IM; Darwin CJ
    J Acoust Soc Am; 1986 Jan; 79(1):100-13. PubMed ID: 3944336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms.
    Wang X; Sachs MB
    J Neurophysiol; 1995 Apr; 73(4):1600-16. PubMed ID: 7643170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons.
    Caspary DM; Backoff PM; Finlayson PG; Palombi PS
    J Neurophysiol; 1994 Nov; 72(5):2124-33. PubMed ID: 7884448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lateral suppression and inhibition in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 Feb; 71(2):493-514. PubMed ID: 8176421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of OFF-BF tones on responses of chopper units in ventral cochlear nucleus. I. Regularity and temporal adaptation patterns.
    Blackburn CC; Sachs MB
    J Neurophysiol; 1992 Jul; 68(1):124-43. PubMed ID: 1517819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural coding in the chick cochlear nucleus.
    Warchol ME; Dallos P
    J Comp Physiol A; 1990 Mar; 166(5):721-34. PubMed ID: 2341992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase-locked response characteristics of single neurons in the frog "cochlear nucleus" to steady-state and sinusoidal-amplitude-modulated tones.
    Feng AS; Lin WY
    J Neurophysiol; 1994 Nov; 72(5):2209-21. PubMed ID: 7884454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal responses of primarylike anteroventral cochlear nucleus units to the steady-state vowel /i/.
    Winter IM; Palmer AR
    J Acoust Soc Am; 1990 Sep; 88(3):1437-41. PubMed ID: 2172345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responses of cochlear nucleus units in the chinchilla to iterated rippled noises: analysis of neural autocorrelograms.
    Shofner WP
    J Neurophysiol; 1999 Jun; 81(6):2662-74. PubMed ID: 10368386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic range of neural rate responses in the ventral cochlear nucleus of awake cats.
    May BJ; Sachs MB
    J Neurophysiol; 1992 Nov; 68(5):1589-602. PubMed ID: 1479432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat.
    Rhode WS; Kettner RE
    J Neurophysiol; 1987 Feb; 57(2):414-42. PubMed ID: 3559686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth.
    Palmer AR; Jiang D; Marshall DH
    J Neurophysiol; 1996 Feb; 75(2):780-94. PubMed ID: 8714652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial response profiles of posteroventral cochlear nucleus neurons and auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Parham K; Sirianni JG; Chang SO
    J Acoust Soc Am; 1991 Jun; 89(6):2804-17. PubMed ID: 1918624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synaptic events and discharge patterns of cochlear nucleus cells. I. Steady-frequency tone bursts.
    Britt R; Starr A
    J Neurophysiol; 1976 Jan; 39(1):162-78. PubMed ID: 1249600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synaptic events and discharge patterns of cochlear nucleus cells. II. Frequency-modulated tones.
    Britt R; Starr A
    J Neurophysiol; 1976 Jan; 39(1):179-94. PubMed ID: 1249601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.