BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23588815)

  • 1. Protein tyrosine phosphatase ζ enhances proliferation by increasing β-catenin nuclear expression in VHL-inactive human renal cell carcinoma cells.
    Shang D; Xu X; Wang D; Li Y; Liu Y
    World J Urol; 2013 Dec; 31(6):1547-54. PubMed ID: 23588815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The von Hippel-Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells.
    Peruzzi B; Athauda G; Bottaro DP
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14531-6. PubMed ID: 16983094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic oxidative stress causes amplification and overexpression of ptprz1 protein tyrosine phosphatase to activate beta-catenin pathway.
    Liu YT; Shang D; Akatsuka S; Ohara H; Dutta KK; Mizushima K; Naito Y; Yoshikawa T; Izumiya M; Abe K; Nakagama H; Noguchi N; Toyokuni S
    Am J Pathol; 2007 Dec; 171(6):1978-88. PubMed ID: 18055543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma.
    Thompson JM; Nguyen QH; Singh M; Pavesic MW; Nesterenko I; Nelson LJ; Liao AC; Razorenova OV
    Oncogene; 2017 Feb; 36(8):1080-1089. PubMed ID: 27841867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-catenin links von Hippel-Lindau to aurora kinase A and loss of primary cilia in renal cell carcinoma.
    Dere R; Perkins AL; Bawa-Khalfe T; Jonasch D; Walker CL
    J Am Soc Nephrol; 2015 Mar; 26(3):553-64. PubMed ID: 25313256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. von Hippel-Lindau-dependent patterns of RNA polymerase II hydroxylation in human renal clear cell carcinomas.
    Yi Y; Mikhaylova O; Mamedova A; Bastola P; Biesiada J; Alshaikh E; Levin L; Sheridan RM; Meller J; Czyzyk-Krzeska MF
    Clin Cancer Res; 2010 Nov; 16(21):5142-52. PubMed ID: 20978146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGFBI-promoted adhesion, migration and invasion of human renal cell carcinoma depends on inactivation of von Hippel-Lindau tumor suppressor.
    Shang D; Liu Y; Yang P; Chen Y; Tian Y
    Urology; 2012 Apr; 79(4):966.e1-7. PubMed ID: 22341602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations of the von Hippel-Lindau gene confer increased susceptibility to natural killer cells of clear-cell renal cell carcinoma.
    Perier A; Fregni G; Wittnebel S; Gad S; Allard M; Gervois N; Escudier B; Azzarone B; Caignard A
    Oncogene; 2011 Jun; 30(23):2622-32. PubMed ID: 21258414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VHL-HIF-2α axis-induced SMYD3 upregulation drives renal cell carcinoma progression via direct trans-activation of EGFR.
    Liu C; Liu L; Wang K; Li XF; Ge LY; Ma RZ; Fan YD; Li LC; Liu ZF; Qiu M; Hao YC; Shi ZF; Xia CY; Strååt K; Huang Y; Ma LL; Xu D
    Oncogene; 2020 May; 39(21):4286-4298. PubMed ID: 32291411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High expression of the secreted protein dickkopf homolog 4: roles in invasion and metastasis of renal cell carcinoma and its association with Von Hippel-Lindau gene.
    Zhai W; Hu GH; Zheng JH; Peng B; Liu M; Huang JH; Wang GC; Yao XD; Xu YF
    Int J Mol Med; 2014 May; 33(5):1319-26. PubMed ID: 24573574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VHL-TGFBI signaling is involved in the synergy between 5-aza-2'-deoxycytidine and paclitaxel against human renal cell carcinoma.
    Shang D; Xian S; Han T; Li X; Liu Y
    J BUON; 2017; 22(4):1038-1045. PubMed ID: 28952225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-1826 directly targets beta-catenin (CTNNB1) and MEK1 (MAP2K1) in VHL-inactivated renal cancer.
    Hirata H; Hinoda Y; Ueno K; Nakajima K; Ishii N; Dahiya R
    Carcinogenesis; 2012 Mar; 33(3):501-8. PubMed ID: 22180573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VHL-TGFBI signaling is involved in the synergy between 5-aza-2'-deoxycytidine and paclitaxel against human renal cell carcinoma.
    Shang D; Xian S; Han T; Li X; Liu Y
    J BUON; 2017; 22(2):500-507. PubMed ID: 28534376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VHL loss predicts response to Aurora kinase A inhibitor in renal cell carcinoma cells.
    Ding XF; Zhou J; Chen G; Wu YL
    Mol Med Rep; 2018 Jul; 18(1):1206-1210. PubMed ID: 29845253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct von Hippel-Lindau gene and hypoxia-regulated alterations in gene and protein expression patterns of renal cell carcinoma and their effects on metabolism.
    Leisz S; Schulz K; Erb S; Oefner P; Dettmer K; Mougiakakos D; Wang E; Marincola FM; Stehle F; Seliger B
    Oncotarget; 2015 May; 6(13):11395-406. PubMed ID: 25890500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Androgen receptor (AR) suppresses miRNA-145 to promote renal cell carcinoma (RCC) progression independent of VHL status.
    Chen Y; Sun Y; Rao Q; Xu H; Li L; Chang C
    Oncotarget; 2015 Oct; 6(31):31203-15. PubMed ID: 26304926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C.
    Niu X; Zhang T; Liao L; Zhou L; Lindner DJ; Zhou M; Rini B; Yan Q; Yang H
    Oncogene; 2012 Feb; 31(6):776-86. PubMed ID: 21725364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of the type 1 insulin-like growth factor receptor as a therapeutic target in renal cancer.
    Yuen JS; Akkaya E; Wang Y; Takiguchi M; Peak S; Sullivan M; Protheroe AS; Macaulay VM
    Mol Cancer Ther; 2009 Jun; 8(6):1448-59. PubMed ID: 19509240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key role for activin B in cellular transformation after loss of the von Hippel-Lindau tumor suppressor.
    Wacker I; Sachs M; Knaup K; Wiesener M; Weiske J; Huber O; Akçetin Z; Behrens J
    Mol Cell Biol; 2009 Apr; 29(7):1707-18. PubMed ID: 19158274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/β-catenin pathway.
    Hsu RJ; Ho JY; Cha TL; Yu DS; Wu CL; Huang WP; Chu P; Chen YH; Chen JT; Yu CP
    PLoS One; 2012; 7(10):e47649. PubMed ID: 23094073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.