These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2358887)

  • 1. Efferent neurons and suspected interneurons in S-1 forelimb representation of the awake rabbit: receptive fields and axonal properties.
    Swadlow HA
    J Neurophysiol; 1990 Jun; 63(6):1477-98. PubMed ID: 2358887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efferent neurons and suspected interneurons in second somatosensory cortex of the awake rabbit: receptive fields and axonal properties.
    Swadlow HA
    J Neurophysiol; 1991 Oct; 66(4):1392-409. PubMed ID: 1761989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs.
    Swadlow HA
    J Neurophysiol; 1994 Feb; 71(2):437-53. PubMed ID: 8176419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties.
    Swadlow HA
    J Neurophysiol; 1989 Jul; 62(1):288-308. PubMed ID: 2754479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efferent neurons and suspected interneurons in binocular visual cortex of the awake rabbit: receptive fields and binocular properties.
    Swadlow HA
    J Neurophysiol; 1988 Apr; 59(4):1162-87. PubMed ID: 3373273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatosensory cortical efferent neurons of the awake rabbit: latencies to activation via supra--and subthreshold receptive fields.
    Swadlow HA; Hicks TP
    J Neurophysiol; 1996 Apr; 75(4):1753-9. PubMed ID: 8727411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual cortex of awake rabbits: receptive-field properties, axonal properties, and effects of EEG arousal.
    Swadlow HA; Weyand TG
    J Neurophysiol; 1987 Apr; 57(4):977-1001. PubMed ID: 3585466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the excitability of neocortical efferent neurons to direct activation by extracellular current pulses.
    Swadlow HA
    J Neurophysiol; 1992 Aug; 68(2):605-19. PubMed ID: 1527578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of VPM afferents on putative inhibitory interneurons in S1 of the awake rabbit: evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation.
    Swadlow HA
    J Neurophysiol; 1995 Apr; 73(4):1584-99. PubMed ID: 7643169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex.
    Swadlow HA; Beloozerova IN; Sirota MG
    J Neurophysiol; 1998 Feb; 79(2):567-82. PubMed ID: 9463422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Descending corticofugal neurons in layer 5 of rabbit S1: evidence for potent corticocortical, but not thalamocortical, input.
    Swadlow HA
    Exp Brain Res; 2000 Jan; 130(2):188-94. PubMed ID: 10672472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal activity in normal and deafferented forelimb somatosensory cortex of the awake cat.
    Salimi I; Webster HH; Dykes RW
    Brain Res; 1994 Sep; 656(2):263-73. PubMed ID: 7820586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of locus coeruleus stimulation on the responses of SI neurons of the rat to controlled natural and electrical stimulation of the skin.
    Snow PJ; Andre P; Pompeiano O
    Arch Ital Biol; 1999 Feb; 137(1):1-28. PubMed ID: 9934431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-correlation analysis reveals laminar differences in thalamocortical interactions in the somatosensory system.
    Johnson MJ; Alloway KD
    J Neurophysiol; 1996 Apr; 75(4):1444-57. PubMed ID: 8727389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of different classes of neurons of the motor cortex during locomotion.
    Beloozerova IN; Sirota MG; Swadlow HA
    J Neurosci; 2003 Feb; 23(3):1087-97. PubMed ID: 12574439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efferent systems of the rabbit visual cortex: laminar distribution of the cells of origin, axonal conduction velocities, and identification of axonal branches.
    Swadlow HA; Weyand TG
    J Comp Neurol; 1981 Dec; 203(4):799-822. PubMed ID: 6173404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal conduction properties of antidromically identified neurons in rat barrel cortex.
    Kelly MK; Carvell GE; Hartings JA; Simons DJ
    Somatosens Mot Res; 2001; 18(3):202-10. PubMed ID: 11562083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex.
    Swadlow HA
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1717-27. PubMed ID: 12626006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Five topographically organized fields in the somatosensory cortex of the flying fox: microelectrode maps, myeloarchitecture, and cortical modules.
    Krubitzer LA; Calford MB
    J Comp Neurol; 1992 Mar; 317(1):1-30. PubMed ID: 1573055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution of corticocortical, thalamocortical, and callosal inputs on identified motor cortex output neurons: mechanisms for their selective recruitment.
    Zarzecki P
    Somatosens Mot Res; 1991; 8(4):313-25. PubMed ID: 1667057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.