These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23588997)

  • 1. Modelling zirconium hydrides using the special quasirandom structure approach.
    Wang H; Chroneos A; Jiang C; Schwingenschlögl U
    Phys Chem Chem Phys; 2013 May; 15(20):7599-603. PubMed ID: 23588997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Special quasirandom structures for gadolinia-doped ceria and related materials.
    Wang H; Chroneos A; Jiang C; Schwingenschlögl U
    Phys Chem Chem Phys; 2012 Sep; 14(33):11737-42. PubMed ID: 22828722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory.
    Weck PF; Kim E; Tikare V; Mitchell JA
    Dalton Trans; 2015 Nov; 44(43):18769-79. PubMed ID: 26478228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles study of electronic structures and stability of body-centered cubic Ti-Mo alloys by special quasirandom structures.
    Sahara R; Emura S; Ii S; Ueda S; Tsuchiya K
    Sci Technol Adv Mater; 2014 Jun; 15(3):035014. PubMed ID: 27877690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2.
    Zhao S; Stocks GM; Zhang Y
    Phys Chem Chem Phys; 2016 Sep; 18(34):24043-56. PubMed ID: 27523408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasirandom geometric networks from low-discrepancy sequences.
    Estrada E
    Phys Rev E; 2017 Aug; 96(2-1):022314. PubMed ID: 28950619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of doping on the ionic conductivity of ceria: a comprehensive model.
    Wang H; Chroneos A; Schwingenschlögl U
    J Chem Phys; 2013 Jun; 138(22):224705. PubMed ID: 23781813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zirconium oxidation on the atomic scale.
    Hudson D; Cerezo A; Smith GD
    Ultramicroscopy; 2009 Apr; 109(5):667-71. PubMed ID: 19101084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio modeling of MAX phase solid solutions using the special quasirandom structure approach.
    Jiang C; Chroneos A
    Phys Chem Chem Phys; 2018 Jan; 20(2):1173-1180. PubMed ID: 29242880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing special quasirandom structure (SQS) models for accurate functional property prediction in disordered 2D alloys.
    Wong ZM; Tan TL; Yang SW; Xu GQ
    J Phys Condens Matter; 2018 Dec; 30(48):485402. PubMed ID: 30406769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronegativity and doping in Si
    Christopoulos SG; Kuganathan N; Chroneos A
    Sci Rep; 2020 May; 10(1):7459. PubMed ID: 32366971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and electronic properties of palladium hydrides and palladium-rhodium dihydride alloys under pressure.
    Yang X; Li H; Ahuja R; Kang T; Luo W
    Sci Rep; 2017 Jun; 7(1):3520. PubMed ID: 28615686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-H activation of methane by laser-ablated zirconium atoms: CH2=ZrH2, the simplest carbene hydride complex, agostic bonding, and (CH3)2ZrH2.
    Cho HG; Wang X; Andrews L
    J Am Chem Soc; 2005 Jan; 127(1):465-73. PubMed ID: 15631498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of Hydride Nucleation, Growth, Reorientation, and Embrittlement in Zirconium: A Review.
    Jia YJ; Han WZ
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H in α-Zr and in zirconium hydrides: solubility, effect on dimensional changes, and the role of defects.
    Christensen M; Wolf W; Freeman C; Wimmer E; Adamson RB; Hallstadius L; Cantonwine PE; Mader EV
    J Phys Condens Matter; 2015 Jan; 27(2):025402. PubMed ID: 25501106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An n-body potential for a Zr-Nb system based on the embedded-atom method.
    Lin DY; Wang SS; Peng DL; Li M; Hui XD
    J Phys Condens Matter; 2013 Mar; 25(10):105404. PubMed ID: 23396811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular understanding of the formation of surface zirconium hydrides upon thermal treatment under hydrogen of [([triple bond]SiO)Zr(CH2tBu)3] by using advanced solid-state NMR techniques.
    Rataboul F; Baudouin A; Thieuleux C; Veyre L; Copéret C; Thivolle-Cazat J; Basset JM; Lesage A; Emsley L
    J Am Chem Soc; 2004 Oct; 126(39):12541-50. PubMed ID: 15453787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DFT based investigation into the electronic structure and properties of hydride rich rhodium clusters.
    Brayshaw SK; Green JC; Hazari N; Weller AS
    Dalton Trans; 2007 May; (18):1781-92. PubMed ID: 17471373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio random structure searching.
    Pickard CJ; Needs RJ
    J Phys Condens Matter; 2011 Feb; 23(5):053201. PubMed ID: 21406903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.